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GAMMA I 
A GENERAL THEOREM-PROVING PROGRAM 

FOR THE IBM 704 

by 

John Alan Robinson 

INTRODUCTION 

GAMMA I is a FORTRAN-compiled program for the IBM 704 
Electronic Data-Process ing Machine. It embodies a certain general , uni­
form procedure H of mathematical logic for seeking out a proof of any 
theorem within any mathematical theory which is given in formal axiomatic 
form. 

The procedure H is theoretically complete. Using it, one will 
always discover a proof for a theorem if there is one to be discovered. 
However, as a pract ical instrument, the procedure H has severe l imita­
tions; in most cases of strong mathematical interest it calls for the execu­
tion of more steps than can be car r ied out in any reasonable time by the 
fastest machines ever likely to be available. The actual capability of 
GAMMA I is therefore no greater than these pract ical limitations inherent 
in the procedure H will allow. Nevertheless, GAMMA I is remarkably 
effective in a wide class of cases , including, for example, the modern 
algebraic theory of lattice s t ruc tures . 

Plans are afoot for GAMMA II, a program which will embody other 
theoret ical procedures over and above the procedure H, and which will 
possess a capability much greater than that of GAMMA I. These plans 
are discussed in the sequel. 

Pr ior to a detailed description of GAMMA I itself, an extended 
discussion is provided of the underlying method, and of the necessa ry 
background of mathematical logic. No knowledge of this field is presup­
posed. In the subsequent discussion of the computer program, however, 
it is assumed that the reader is reasonably well acquainted with IBM 704 
programming, and in par t icular with the FORTRAN symbolic p rogram­
ming system. 

GAMMA I was written at the Argonne National Laboratory for the 
Applied Mathematics Division in the summer of 1961. The work was much 
facilitated by the active and helpful cooperation of George A. Robinson, J r . , 
and Herber t L. Gray, both of the Applied Mathematics Division. 



C H A P T E R I. M A T H E M A T I C A L LOGIC 

1- I n t r o d u c t i o n . T h e G e n e r a l Role of M o d e r n Logic • 

T h e d i s c o u r s e of m a t h e m a t i c i a n s , when they a r e giving p r o o f s and 
s t a t i n g r e s u l t s , i s c a r r i e d on in one of the n a t u r a l l a n g u a g e s , s u c h a s 
E n g l i s h , l i b e r a l l y s u p p l e m e n t e d by a t e r s e s h o r t h a n d no t a t i on invo lv ing the 
l e t t e r s of v a r i o u s a l p h a b e t s p r i n t e d in v a r i o u s t y p e s of f o r m a t s , and by 
m a n y s p e c i a l s y m b o l s , such a s the e q u a l i t y o r i den t i t y s ign , the s u m m a ­
t ion and p r o d u c t s i g n s , and the s ign for an i n t e g r a l . 

With in s u c h an e n r i c h e d n a t u r a l l a n g u a g e the m a t h e m a t i c i a n m a k e s 
a s s e r t i o n s , e m b o d i e d s y n t a c t i c a l l y in s e n t e n c e s , and f u r t h e r m o r e he c l a i m s 
t h a t s o m e of t he a s s e r t i o n s fol low f r o m , o r a r e c o n s e q u e n c e s of, o r a r e 
d e d u c i b l e f r o m , one o r m o r e o t h e r a s s e r t i o n s . In any p a r t i c u l a r c a s e , to 
show t h a t t h i s i s i n d e e d s o , t he m a t h e m a t i c i a n s e e k s to p r o v i d e a proof of 
an a s s e r t i o n T f r o m a s e t of p r e m i s e s . P , . P2, . . . , Pj^. The b u r d e n of the 
p r o o f i s to e s t a b l i s h t he fact t h a t if the p r e m i s e s P , , P j , . . . , P ^ a r e t r u e , 
t h e n so m u s t the c o n c l u s i o n , the a s s e r t i o n T, a l s o be t r u e . The ques t ion 
w h e t h e r t he p r e m i s e s P j , P j , . . . Pjj a r e i ndeed t r u e is a s e p a r a t e m a t t e r 
f r o m the q u e s t i o n w h e t h e r , if t h e y a r e , t h e n the c o n c l u s i o n m u s t b e . 

T h e a p p a r a t u s of m o d e r n l o g i c a l t h e o r y p r o v i d e s an e x a c t a n a l y s i s 
of t he n o t i o n s l u r k i n g beh ind the w o r d s and p h r a s e s u n d e r l i n e d in t he 
p r e v i o u s p a r a g r a p h . A m a j o r c o n t r i b u t i o n of m o d e r n logic h a s b e e n the 
c o n s t r u c t i o n of a f a m i l y of a r t i f i c i a l (as o p p o s e d to n a t u r a l ) l a n g u a g e s in ­
c o r p o r a t i n g t he f r u i t s of t h i s e x a c t a n a l y s i s . T h e s e l a n g u a g e s a r e in tended 
a s p r e c i s e c o u n t e r p a r t s of the e n r i c h e d n a t u r a l l a n g u a g e s t r a d i t i o n a l l y 
u s e d by m a t h e m a t i c i a n s , hav ing at l e a s t the s a m e e x p r e s s i v e p o w e r as 
(and. in s o m e c a s e s , f a r m o r e e x p r e s s i v e p o w e r than) t h e i r n a t u r a l c o u s ­
i n s . T h e c r e a t i o n of t h e s e a r t i f i c i a l l a n g u a g e s is a twofold boon: f i r s t , a 
m o r e f ine ly t u n e d i n s t r u m e n t i s t h e r e b y p r o v i d e d for t a l k i n g , th ink ing , and 
w r i t i n g m a t h e m a t i c a l l y ; but s e c o n d , t he l a n g u a g e of m a t h e m a t i c s i s now 
e x h i b i t e d a s i t s e l f a p r e c i s e l y def ined s t r u c t u r e , c a p a b l e of be ing m a t h e ­
m a t i c a l l y s t u d i e d in j u s t the s a m e way a s g r o u p s , r i n g s , f i e l d s , t o p o l o g i e s , 
v e c t o r s p a c e s , and o t h e r s t r u c t u r e s a r e s tud i ed in t r a d i t i o n a l m a t h e m a t i c s . 

P r o f o u n d and beau t i fu l r e s u l t s of f a r - r e a c h i n g i m p o r t a n c e h a v e 
a l r e a d y b e e n o b t a i n e d in the f i r s t few d e c a d e s of w o r k m a d e p o s s i b l e by the 
s e c o n d of t h e s e two b o o n s . S e v e r a l of t h e s e r e s u l t s a r e of i m p o r t a n c e for 
o u r p r e s e n t d i s c u s s i o n . The f i r s t boon h a s not ye t , h o w e v e r , b e e n exp lo i t ed 
s y s t e m a t i c a l l y . We a r e j u s t beg inn ing to r e a l i z e i t s p o w e r , wi th t he r e l ­
a t i v e l y r e c e n t a d v e n t of l a r g e , f a s t , a u t o m a t i c , s y m b o l - m a n i p u l a t i o n 
m a c h i n e s . 



2. Predica te Calculi of F i r s t Order 

One subfamily of artificial languages constructed in modern logic 
consists of the so-cal led predicate calculi of f irst order . There a re many 
members of this family, some being but slight variants of others , some 
being very different indeed from others, but all having in common certain 
fundamental features which determine the family relationship. As the title 
given to the family suggests, the central notion underlying the whole family 
is that of a predicate. 

We are used to the idea, in traditional mathematical usage, of 
formulating such inscriptions as: 

2 • X -F 4 = 10 (1) 

and 

12 • y ==29 . (2) 

in which "x" and "y" are variables, thought of as ranging over some set 
(say, the set N of positive integers), "2," "4," "10," "12," and "29" as 
constants, "-f" "•" as operations, and " = " " £" as relat ions. If we sys ­
tematically replace "x" in (1) by constants denoting part icular members 
of N: 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

etc. , we obtain a set of specific asser t ions , some of which are false, others 
true, about members of N. In our example, (1.3) is true and all the res t 
false. Similarly, systematically replacing "y" in (2) gives 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

etc., a set of asser t ions in which (2.1) and (2.2) are false and the res t are 
true. 

2 . 

2 • 

2 , 

2 • 

. 1 -1- 4 = 

• 2 + 4 = 

. 3 -1- 4 = 

• 4 4 - 4 = 

= 10 

= 10 

= 10 

= 10 

12 . 

12 • 

12 • 

12 • 

. 1 > 29 

• 2 a 29 

- 3 a 29 

4 5= 29 



If we call the inscriptions (1.1), (1.2), ..., and (2.1), (2.2), ..., 
sentences, then the inscriptions (l) and (2) are revealed as things which 
give r i se to sentences whenever one replaces the variables which occur 
within them by constants, or, in other words, by names of individual enti­
t ies from the set which is the range of the variables . These syntactical 
things are called predicates . They may have many variables , not simply 
one, as our examples have, and each variable may occur many t imes , not 
just once, as in our examples. Thus, e.g., 

3x^ + 4x + 2y + y^ + z = w -I- 3w ' - z^ (3) 

contains the four variables "x," "y," "z," and "w," each with two 
occur rences . 

So far our examples of predicates have involved just one type of 
variable (i .e. , all ranging over the same set). But we can generalize this 
feature by introducing other variables of different types, with different sets 
to range over. Consider, for example: 

R(/3(a(2,x), 4), 10) , (4) 

which was obtained from (l) first by writing (l) in the form 

= (-^(•(2,x), 4), 10) , (5) 

that i s , by writing operators (or function signs) prior to their parenthesized 
arguments , and relation signs prior to their parenthesized arguments; and 
second by replacing " = ," ".", and "-I-" by variables "R," "a," and "j3." 
We now may think of (4) as being a predicate containing variables of different 
types: "R" has for its range the set G of all relations on N (a set of which 
the identity relation is just one member) ; "a" and "j3" have as their ranges 
the set F of all binary functions over the set N (sum and product being 
just two par t icular members of this set); while 'x' as before has as its 
range simply the set N itself. 

The predicate (4) becomes a sentence, embodying a specific a s se r ­
tion, whenever "R" is replaced at each of its occurrences by the name of 
something in G, 'a ' and '/3' a re replaced at each of their occurrences by 
the names of things in F, and 'x' is replaced at each of its occurrences by 
the name of something in N. Indeed, we may envisage theoretically the 
resul t s of doing this replacement in all possible ways (of which there are 
denumerably infinitely manyl) to obtain the set I of all the (denumerably 
many) sentences which are instances of the predicate (4). Then each 
member of I is either true or false, depending on which specific rep lace­
ments w^ere used to obtain it from (4). 



A f u r t h e r g e n e r a l i z a t i o n f rom t h e s e i l l u s t r a t i o n s is r e q u i r e d . In 
o u r e x a m p l e , we have u s e d b i n a r y r e l a t i o n s and b i n a r y func t ions only: but 
in g e n e r a l we m a y w o r k with any (f ini te , p o s i t i v e ) n u m b e r of a r g u m e n t s 
for bo th r e l a t i o n s and func t ions , and not j u s t two as in ou r e x a m p l e . 

T h e s e c o n s i d e r a t i o n s u n d e r l i e the s p e c i f i c a t i o n s of t ha t one of the 
p r e d i c a t e c a l c u l i of f i r s t o r d e r which we s h a l l f i r s t c o n s i d e r . 

We p r o v i d e , for t h i s l a n g u a g e , an u n l i m i t e d supp ly of e a c h of the 
fol lowing c a t e g o r i e s of s y m b o l s : 

A. R e l a t i o n a l v a r i a b l e s . 

P , Q, R. P l , Qi , Ri , P2, . . . 

B . F u n c t i o n a l v a r i a b l e s . 

a , p, 7, O], |3i, 7 i , a^, . . . 

C. Indiv idual v a r i a b l e s . 

u, V, w, X, y, z, U.I, Vl, Wi, Xi, y i , Zi, u^, . . . 

D. R e l a t i o n a l c o n s t a n t s . 

= , >, s , >, <, (ad l ib i tum) 

E . F u n c t i o n a l c o n s t a n t s . 

+ . X, - , 7, (ad l ib i tum) 

F . Ind iv idua l c o n s t a n t s . 

0, 1, 2, 3, . . . . TT, e, . . . , (ad l i b i tum) 

and the t h r e e " g r o u p i n g " s y m b o l s " ( " , " ) " , and " , " . We t h e n def ine two 
d i f f e ren t c l a s s e s of s t r i n g s of t h e s e s y m b o l s , t e r m s and p r e d i c a t e s : 

T e r m s 

(a) An ind iv idua l c o n s t a n t i s a t e r m . 

(b) An ind iv idua l v a r i a b l e i s a t e r m . 

(c) If --T is a func t iona l v a r i a b l e o r a func t iona l c o n s t a n t , and C/i, 
J z, ••, J]^ a r e t e r m s (with k a 1) then 

^ ( A 7k) 



i s a l s o a t e r m ( i . e . , the s t r i n g c o n s i s t i n g of-^ , fo l lowed by a 
left p a r e n t h e s i s , fol lowed by 'C/i, fol lowed by a c o m m a , fol lowed 
by 'J?2, e t c . ) . 

P r e d i c a t e s 

(d) If £ i s a r e l a t i o n a l v a r i a b l e o r a r e l a t i o n a l c o n s t a n t , and 
7 i ' "JZ' •••• Ck (with k ^ 1) a r e t e r m s , t h e n 

R ( ^ i ^ k ) 

i s a p r e d i c a t e . 

It wi l l be no ted tha t the e x a c t de f in i t ion of p r e d i c a t e s given 
a b o v e i n c l u d e s , a s s p e c i a l c a s e s of p r e d i c a t e s , t h o s e which con ta in no 
v a r i a b l e s , and h e n c e a r e s e n t e n c e s : 

S e n t e n c e s 

Any p r e d i c a t e wh ich c o n t a i n s no v a r i a b l e s i s a s e n t e n c e . 

We now i n t r o d u c e s o m e f u r t h e r i d e a s , b a s e d upon the fact that it is 
p o s s i b l e and i n d e e d c u s t o m a r y and i n d i s p e n s i b l e to m a k e new p r e d i c a t e s 
out of o ld . T h e r e a r e two ways in which t h i s i s d o n e , t r u t h - f u n c t i o n a l c o m -
b i n a t i o n and q u a n t i f i c a t i o n , bo th of which h a v e in tu i t ive c o u n t e r p a r t s in the 
n a t u r a l l a n g u a g e . 

T h u s we i n t r o d u c e , a s a f u r t h e r supp ly of s y m b o l s , the following 
f ive : 

and s t a t e f o r m a l l y the fol lowing add i t ion to the def in i t ion of p r e d i c a t e : 

(e) If Z' i s a p r e d i c a t e , t hen so is ~ fi ; ii P and Q a r e both p r e d i c a t e s , 
t h e n ( P &: Q), ( PM Q ), ((^-» a ) , and {IP--K3 ) a r e e a c h a l so 
p r e d i c a t e s . 

I n f o r m a l l y , the s y m b o l " ~ " i s in tended to c o r r e s p o n d to "it i s not 
t he c a s e t h a t , " and i s c a l l e d the n e g a t i o n s ign : "&" i s i n t ended to c o r r e s ­
pond to "and , " "V " to t he l e g a l i s t i c b a r b a r i s m " a n d / o r , " and t h e y a r e 
c a l l e d , r e s p e c t i v e l y , the con junc t ion s ign and the d i s j u n c t i o n s ign ; f ina l ly 
"_»." i s i n t ended to c o r r e s p o n d to "if . . . t h e n , " and "<-»•" to "if and on ly 
if," and they a r e c a l l e d , r e s p e c t i v e l y , the i m p l i c a t i o n s ign and the 
e q u i v a l e n c e s i g n . 



Our original supply of predicates (those given by part (d) of the 
definition of predicate) a re now called atomic predicates , while those con­
structed via part (e) of the definition are called compound predica tes . 

So much, for now, for the first method of constructing further 
predicates from given ones, by truth-functional combination. 

The second method, quantification, is intended as an exact counter­
part of the natural language phrases "for al l" and "there exis ts ." For 
instance, harking back to example (1), we may say (falsely): 

"For all X, 2x -f 4 = 10" (6) 

or we may say (truthfully): 

"There exists an x such that 2x -I- 4 = 10" . (7) 

Two facts are noteworthy about (6) and (7). F i r s t , even though 
they contain variables , they are sentences, that i s , they make specific 
asser t ions and are hence either true or false. The variables which they 
contain a re not, as in our ear l ier examples, capable of being replaced by 
constants to produce sentences; on the contrary, if we replace them by 
constants we get gibberish, e.g., 

"For all 3. 2 • 3 -h 4 = 10" (8) 

"There exists a 17 such that 2 • 17 -f 4 = 10" . (9) 

We therefore say that the variables are dummy variables , or that they 
have been "killed" or "bound" by the phrases "for all . . ." and "there 
exists ... ." 

The second noteworthy fact about (6) and (7) is that their truth or 
falsity depends on that of sentences which are instances of the predicates 
from which they were obtained. Thus (6) is true just in case all the in­
stances of (1) are t rue sentences, while (7) is true just in case not all of 
these instances are false. 

We incorporate these ideas into our artificial language by adding 
the symbols "E" and "A" to our stock of symbols, and by appending a 
third clause to our definition of predicate: 

(f) If \^ is an individual variable, and ^ is a predicate , then 

(A I'' ) P 3.nA {•£. V ) P 

are both also predicates . 



10 

In o r d e r to m a k e p r e c i s e t he no t ions of d u m m y v a r i a b l e s o r bound 
v a r i a b l e s , we m u s t now add the fol lowing f o r m a l c h a r a c t e r i z a t i o n : 

(g)(i) E a c h o c c u r r e n c e of any ind iv idua l v a r i a b l e a p p e a r i n g in an 
a t o m i c p r e d i c a t e i s a f r e e o c c u r r e n c e of t ha t v a r i a b l e in 
tha t p r e d i c a t e . 

(ii) F r e e o c c u r r e n c e s of v a r i a b l e s in fi and Q r e m a i n so in 
((^ & (5 ). {fi\lQ), i/P-^Q), ( ( ^ ~ < 2 ) , and ~P, ~Q. 

(iii) E a c h o c c u r r e n c e of V which is f r e e in iP i s bound in ( A T / ) / ' 
and in (E2 / ' ) / ' , and is f u r t h e r m o r e bound by tha t p a r t i c u l a r 
o c c u r r e n c e of "A" o r " E . " (in add i t ion , tha t o c c u r r e n c e of 
lA i m m e d i a t e l y a f t e r "A" o r " E " is a l s o bound in (Alf) P or 
{El/')P, and is l i k e w i s e bound by tha t p a r t i c u l a r o c c u r r e n c e 
of "A" o r " E . " ) All o t h e r f r e e o c c u r r e n c e s of v a r i a b l e s 
in P r e m a i n f r e e in (AV)P and {EV)P. {AV)P i s ca l l ed 
the s c o p e of t h a t o c c u r r e n c e of " A , " l i k e w i s e for " E . " The 
g r o u p of s y m b o l s " ( A V ) " is c a l l e d a u n i v e r s a l quan t i f i e r : 
" ( E l / ) " i s c a l l e d an e x i s t e n t i a l q u a n t i f i e r . 

I n f o r m a l l y , in e x a m i n i n g a p r e d i c a t e to d e t e r m i n e which o c c u r r e n c e s 
of i t s v a r i a b l e s a r e bound and which f r e e , and, if bound, by what o c c u r ­
r e n c e s of "A" o r " E , " we w o r k f r o m the " i n s i d e " of the p r e d i c a t e to the 
" o u t s i d e , " by s t a r t i n g wi th t h o s e i n n e r m o s t o c c u r r e n c e s of "A" or " E " 
which h a v e no o t h e r q u a n t i f i e r s in t h e i r s c o p e s , and a l lo t t ing to t h e m any 
o c c u r r e n c e s of ' t h e i r ' v a r i a b l e s wh ich o c c u r in t h e i r s c o p e s . T h en we 
repeat this o p e r a t i o n for the o t h e r q u a n t i f i e r s , r e p e a t e d l y t ak ing the i n n e r ­
m o s t q u a n t i f i e r not yet t r e a t e d , a l lo t t ing to t h e m a l l f r e e o c c u r r e n c e s of 
t h e i r v a r i a b l e s i n s i d e t h e i r s c o p e s (for now t h e r e m a y be s o m e bound 
o c c u r r e n c e s , owned by q u a n t i f i e r s i n s i d e the s c o p e , which have t h e r e f o r e 
a l r e a d y b e e n a l l o t t e d ) . 

T h u s , e v e r y o c c u r r e n c e of e v e r y ind iv idua l v a r i a b l e in e v e r y 
p r e d i c a t e i s e i t h e r f r e e o r bound, and, if bound, bound by one and only 
one q u a n t i f i e r : and we can a l w a y s d e t e r m i n e the un ique way in which 
t h i s m u s t be the c a s e . 

T h i s c o m p l e t e s the m o r p h o l o g y of ou r l a n g u a g e . We c o m m e n t 
h e r e t h a t t he r e s t r i c t i o n of quan t i f i ca t ion to i nd iv idua l v a r i a b l e s i s what 
d e t e r m i n e s o u r l a n g u a g e to be a p r e d i c a t e c a l c u l u s "of f i r s t o r d e r "; 
l a n g u a g e s in which quan t i f i c a t i on o v e r r e l a t i o n a l v a r i a b l e s and func t iona l 
v a r i a b l e s a r e a l s o s t u d i e d a r e d e s i g n a t e d a s be ing of h i g h e r o r d e r than 
the f i r s t . 

3. I n t e r p r e t a t i o n s . Va l id i ty , Sa t i s f i ab i l i t y , C o n s e q u e n c e . 

We have a l r e a d y , in our i n f o r m a l p r e l i m i n a r y d i s c u s s i o n , t o u c h e d 
upon the i n t e r p r e t a t i o n of t h i s a r t i f i c i a l l anguage 
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No specific interpretation is provided for the language defined above. 
Indeed, it is a "general-purpose" language, and there comes with it a set 
of instructions as to how to make your own interpretat ion suitable to the 
job you have in mind in using the language. The instructions are these: 

A. Choose a specific set S as the range of each individual 
variable, and to each member of S allot a unique distinct one 
of the individual constants to be its name. (You may have a 
lot of individual constants left over, with nothing in S to 
name; if so, forget about them.) 

B. Now consider successively the set of all singulary functions 
from S to S, all binary functions from SxS to S, and so on; 
these sets are to be, respectively, the ranges of any functional 
variable which occurs in a predicate with one, two, ..., a rguments . 

C. Allot to each member of each of these sets of functions over S, 
exactly one of the functional constants to be its name. 

D. Do the same as in B and C, for all the singulary, binary, ..., 
relations over S, assigning thereby ranges to all occurrences 
of relational variables , and assigning distinct unique relational 
constants as names for the distinct relations over S. 

Notice that the only choice you have in making an interpretation is of the 
initial set S, and of the names of the various entities thus determined 
from the stock of general-purpose names provided for you by the language. 
Once you have done this, the status of all predicates of the language is 
uniquely determined except those containing unused names, which we 
ignore in what follows. In part icular , the truth or falsity of each sentence 
is completely fixed by your choice of S and your assignment of names . 
Two other labels are provided in order to assign a status to predicates 
which are not sentences. We say that a predicate is satisfiable in an 
interpretation if not all of the sentences which are its instances are false 
in the interpretation; a predicate is valid in an interpretation if none of 
the sentences which are its instances are false in the interpretat ion. 

Now it makes at least as much sense here as anywhere else in 
mathematics to pass to the notion of all possible sets S which might be 
chosen as the initial set for an interpretation of our general-purpose 
language, and thence to the class of all possible interpretations which the 
language can be given. In t e rms of this idea, we can assign absolute 
s tatuses to the predicates as follows: a predicate is valid (period) just in 
case it is valid in all interpretat ions; a predicate is satisfiable (period) 
just in case there is at least one interpretation, among all the possible 
interpretat ions, in which it is satisfiable. 
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We a r e now at a point w h e r e we c a n def ine e x a c t l y what i s m e a n t 
by s a y i n g tha t in o u r l a n g u a g e a s e n t e n c e T "fol lows f r o m " o r " i s a 
c o n s e q u e n c e of" one o r m o r e o t h e r s e n t e n c e s P j Pji- The de f in i t ion 
IS t h i s : T i s a c o n s e q u e n c e of P , , . . . , P ^ j u s t in c a s e tha t T i s t r u e in 
e v e r y i n t e r p r e t a t i o n in which P i Pj^ a r e e a c h t r u e . (It m i g h t a l s o 
b e t r u e in o t h e r i n t e r p r e t a t i o n s b e s i d e s , but i t m u s t at l e a s t be t r u e in 
t he o n e s s t a t e d . ) 

The r e a d e r m a y be th ink ing tha t t h e s e de f in i t ions of " v a l i d i t y , " 
" s a t i s f i a b i l i t y , " and " c o n s e q u e n c e " a r e h ighly i m p r a c t i c a l to u s e a s a 
d o w n - t o - e a r t h m e a n s of a s s i g n i n g a s t a t u s to a p r e d i c a t e , o r of d e t e r ­
m i n i n g w h e t h e r one s e n t e n c e is a c o n s e q u e n c e of one o r m o r e o t h e r s . 
He i s r i g h t . T h e y a r e . But t h e y a r e not i n t ended a s p r a c t i c a l c r i t e r i a 
fo r d e t e r m i n i n g t h e s e p r o p e r t i e s of p r e d i c a t e s , but r a t h e r only a s a n a l ­
y s e s of the a c t u a l con t en t of t h e s e no t i ons in g e n e r a l m a t h e m a t i c a l ( i . e . , 
s e t - t h e o r e t i c ) t e r m s . F o r p r a c t i c a l p u r p o s e s , we p a s s now to a n o t h e r 
s e t of c o n c e p t s and de f in i t i ons which a r e in t ended , in a d o w n - t o - e a r t h 
s e n s e , to be u s a b l e by peop le and m a c h i n e s . 

4 . D e d u c t i o n ; P roof ; T h e o r e m s ; T h e D e c i s i o n P r o b l e m . 

The c r i t e r i o n for d e t e r m i n i n g w h e t h e r a s e n t e n c e T i s a consequence 
of one o r m o r e o t h e r s e n t e n c e s P i , P^, . . . , Pn g iven in the p r e v i o u s sec t ion 
i s no t , in g e n e r a l , p r a c t i c a l l y a p p l i c a b l e , s i n c e it i nvo lves the t o t a l i t y of 
p o s s i b l e i n t e r p r e t a t i o n s . A d i f fe ren t kind of c r i t e r i o n , whose app l i ca t i on 
d e p e n d s on ly on the i m m e d i a t e s y n t a c t i c a l s t r u c t u r e of the s e n t e n c e s in 
q u e s t i o n , i s t h e r e f o r e p r o v i d e d . In ou t l i ne , the c r i t e r i o n c o n s i s t s of a s m a l l 
s e t of s t r u c t u r a l r e l a t i o n s h i p s which one s e n t e n c e T c a n have with r e s p e c t 
to a s e t of o t h e r s e n t e n c e s . P i , P j , . . . , Pn- In any p a r t i c u l a r c a s e , w h e r e 
a s e n t e n c e T d o e s in fact b e a r one of t h e s e r e l a t i o n s h i p s to a s e t P j , P^, 
. . . , P j j , we s a y tha t T is i m m e d i a t e l y d e d u c i b l e f r o m P ] , P2, . . . , P^ by 
v i r t u e of the r e l a t i o n s h i p in q u e s t i o n . E a c h of the r e l a t i o n s h i p s is c a r e ­
ful ly def ined so tha t the q u e s t i o n a s to w^hether it d o e s o r d o e s not ob ta in 
b e t w e e n a s e n t e n c e T and a s e t of s e n t e n c e s P i , P2. . . . . P n i s a l w a y s 
e f fec t ive ly d e c i d a b l e by a m e c h a n i c a l p r o c e d u r e which is u n i f o r m and 
wh ich i s a p a r t of the s p e c i f i c a t i o n of the r e l a t i o n s h i p . 

If we h a v e a s e q u e n c e T i , T2, ••., Tj^, of s e n t e n c e s wi th t he p r o p e r t y 
t h a t e a c h T j . 1 £ i s m , in the s e q u e n c e e i t h e r (a) i s i t se l f one of a g iven 
s e t of s e n t e n c e s P i , . . . , Pjj , o r (b) i s i m m e d i a t e l y deduc ib l e f r o m a s e t of 
s e n t e n c e s e a c h of wh ich o c c u r s e a r l i e r in the s e q u e n c e , then we s a y tha t 
t he s e q u e n c e is a deduc t ion of i t s l a s t m e m b e r , T j ^ , f r o m the s e t P j , . . . . 
Pj^ a s p r e m i s e s . 

The q u e s t i o n w h e t h e r a g iven s e q u e n c e of s e n t e n c e s , a l l e g e d to be 
a deduc t ion of i t s l a s t m e m b e r f r o m a given s e t of s e n t e n c e s , i s o r i s not 
i ndeed s u c h a deduc t ion , i s aga in m e c h a n i c a l l y d e c i d a b l e in a u n i f o r m w a y . 
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What is not, a las , a mechanically decidable question is whether or not for 
a given sentence T and a given set Pi, P2, ..-, Pn of sentences, there exists 
a deduction of T from Pi, P2, ..., Pjj as p r emi se s . The proof that this 
question is not mechanically answerable by "Yes" or "No" through applica­
tion of an algorithm is one of the great resul ts of modern logic. It was first 
given in 1936 by Alonzo Church of Princeton University. This is not the 
place to discuss this mat ter at any more length. Suffice it to say that, as 
will appear in the sequel, there are mechanical methods which will uni­
formly determine a deduction of a sentence T from a set Pi, P2, •••, Pjj of 
sentences, provided that such a deduction exis ts ; but if no deduction exists , 
these methods will, in general, never terminate in a discovery of this non­
existence. They a re . therefore, only "semi-a lgor i thms," capable only of 
answering "Yes," not capable, in general, of answering "No." 

A second great resul t of importance here was first given by 
Kurt Godel in 1931. It is that any sentence T which is valid in the sense 
of the previous section can be obtained as the last member of a deduction 
from the empty set of p remises . (This property is known as the com-
pleteness of the deductive apparatus of the language.) It is also the case 
that only valid sentences can be so obtained. Thus, although the charac te r ­
izations" are utterly different, the concepts of validity and deducibility from 
the empty set of premises in fact determine precisely the same class of 
sentences. 

It would require too much space to discuss the details of the re la ­
tionships governing immediate deducibility. Excellent accounts are 
available in the l i terature [see especially W. V. Quine's Methods of Logic, 
Revised Edition. Holt-Dryden (1959) and P. Suppes' Introduction to Logic, 
Van Nostrand (1957)], but each differs from the other in various ways 
which do not affect the completeness and consistency proper t ies . For our 
purposes, we note just one of the deducibility principles, namely, that if 
a sentence S is deducible from premises Pi, ..., P^, then the sentence 
(Pi —" (P2 —" •• -(Pn —*• S)...)) is deducible from no premises at all, and is 
therefore valid (or "logically true") by virtue of Gbdel's completeness 
theorem. Hence, to every deduction there corresponds a valid sentence, 
and the question whether a sentence T can be deduced from premises 
P], .... Pjj is equivalent to the question whether the sentence 
(Pi —" (P2 —" ...(Pj^—• S)...)) is valid. Since the first question admits of no 
algorithmic method for its settlement, neither can the second. 

Now the question whether a sentence S is valid is equivalent to the 
question whether its negation, ~S, is satisfiable (to be prec ise , S is valid 
just in case ~S is not satisfiable). And the negation of (Pi —» (P2 —'• ...(Pn-» S) 
...)) is (Pi&P2&... &Pn&~S), where inner parentheses have been omitted for 
the sake of revealing the pattern. If, therefore, we could show 
(Pi&P2&--- &Pĵ &~S) to be unsatisfiable, we would have shown that S is 
deducible from Pj , ..., Pn as p remises . 
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But this is just the general problem of theorem proving in axioma-
tized mathematical theor ies . Let the axioms of a theory be written as 
sentences Pi, .... Pn of the f i r s t -order predicate calculus given here , and 
let the theorem to be proved be written as a sentence T. To prove that 
T is a theorem of the theory embodied in the axioms Pi, .... Pn ^^ then 
essential ly the same task as that of showing the single sentence 
(Pl &P2&... &Pn& ~T) to be unsatisfiable. 
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CHAPTER II. THE PROCEDURE H. 

1 • Prenex Conjunctive Normal Form. The Procedure H. 

There is a straightforward technique [described in Quine, op. cit. , 
or in Hilbert and Ackermann's Mathematical Logic, Chelsea (l 950)] whereby 
any sentence of the predicate calculus can be put into a certain standard form 
called the prenex conjunctive normal form. In this form, all the quantifiers 
(if any) of the sentence occur at the beginning, and jointly comprise the p r e ­
fix of the sentence. Fur thermore , the predicate part of the sentence (often 
called the matrix) has the form of a conjunction of disjunctions, each member 
of which is either an atomic predicate or the negation of an atomic predicate. 

In preparing to ca r ry out the procedure H in order to show a sentence 
(P] &P2 &... &Pn&~ S) inconsistent, we first reduce Pi, P2,.. . ,Pn, and ~ S to 
prenex conjunctive normal form, each separately from the other. This step 
resul ts in a finite list of sentences each beginning with a finite sequence of 
quantifiers. 

The second step is to drop, from the front of the first sentence which 
begins with an existential quantifier, that existential quantifier, and to r e ­
place each occurrence of the variable thus freed by an individual constant 
(the same one at each occurrence) which does not occur elsewhere anywhere 
in the list of sentences. This operation is repeated until each sentence begins 
either w îth a universal quantifier or w îth no quantifiers at all . 

(These two steps must be performed prior to inputting the sentences 
to the program GAMMA I.) 

Now we proceed to append successively to the list of sentences further 
sentences obtained by systematically dropping initial quantifiers from ear l ie r 
sentences in the list and replacing the var iables , thus freed, by systematically 
chosen individual constants. (In what follows, we employ numerals as the 
individual constants.) The systematic method is given as follows: 

Suppose the list at the nth step of this process consists of the sentences 
Si, S2,...,Sp, and that the largest numeral to have been used so far as an 
individual constant is 0. Then: 

(i) If Sp begins with an existential quantifier, let Sp.|. be the sentence 
obtained from Sp by dropping that existential quantifier, and r e ­
placing each of the occurrences of the variable thus freed by the 
numeral 0-t-l . 
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(ii) If Sp does not begin with an existential quantifier, let Y be the 
ear l ies t numeral with which some universally quantified sentence 
on the list has not yet been instantiated; if * > 0, the process 
t e rmina tes . Otherwise, let Sj be the first universally quantified 
sentence on the list which has not yet been instantiated with ^ , 
and let Sp.|.i be the resul t of instantiating S; with * . 

Successive sentences added in this way are all consequences of the original 
starting l is t . There is a great theorem, first proved by Jacques Herbrand 
in 1930, that the conjunction of the sentences in the starting list is unsatisfi­
able just in case , for some integer x, the conjunction of the first x sentences 
on the generated list is truth functionally unsatisfiable. Fur thermore , we 
can drop from this conjunction any sentences that begin with quantifiers, and 
consider only the conjunction of the quantifier-free sentences (i.e., those 
containing no variables) . 

But we can always test the quantifier-free conjunction of sentences 
at any point in the generating process and ar r ive at a decision algorithmically 
whether or not it is truth-functionally unsatisfiable, and thus, if there _i£ an 
X at which the conjunction of all the quantifier-free sentences up to and in­
cluding Sx is unsatisfiable, we shall certainly find it, and thereby have proved 
that the original list of sentences is inconsistent, and that therefore the as ­
sociated deduction can be made. 

Ear l ier attempts to mechanize this method were handicapped by a 
lack of an efficient method for testing for truth-functional unsatisfiability. 
But recently, Martin Davis and Hilary Putnam (A Computing Procedure for 
Quantification Theory, Journal of the Association for Computing Machinery, 
Vol. 7, No. 3, July I960) gave a remarkably efficient method which is now 
described here , slightly modified. An elegant and useful additional feature 
(due to Herbert L. Gray) has been added. 

2. The Truth Functional Method of Davis and Putnam 

The conjunction of a finite number of sentences, each of which is in 
conjunctive normal form ( i .e . , is a conjunction of disjunctions of atomic 
sentences), is itself a sentence in conjunctive normal form. Let Aj Av 
be the distinct atomic sentences occurring anywhere in the conjunction. 
Each disjunction contains one or more members of the set [Ai Awl, 
either negated or unnegated (but not both Aj and ~Ai, for any i) . The 
question whether the entire conjunction is satisfiable or not is the question 
whether or not truth values can be assigned to each of the A^ in such a way 
that each disjunction in the conjunction is made t rue . In order to make a 
disjunction t rue, one need only make at least one of its members t rue . If 
none of the 2^ possible assignments of truth values to the set [Ai Au] 
makes the whole conjunction t rue, then it is unsatisfiable: otherwise it is 
satisfiable. 
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The D a v i s - P u t n a m p r o c e d u r e c o n s i s t s of e l i m i n a t i n g s u c c e s s i v e l y 
e a c h a t o m i c s e n t e n c e f r o m the con junc t ion unt i l e i t h e r a l l of t h e m a r e 
e l i m i n a t e d (in which c a s e the o r i g i n a l con junc t ion was s a t i s f i a b l e ) or a s t a g e 
i s r e a c h e d at which two d i f fe ren t d i s j u n c t i o n s a r e ob t a ined , both con ta in ing 
on ly one m e m b e r , such tha t the m e m b e r of one d i s j unc t i on i s the n e g a t i o n 
of the m e m b e r of the o t h e r . Spec i f i ca l ly , we p e r f o r m the fol lowing p r o c e s s : 

1 . If the con junc t ion is now e m p t y , then the o r i g i n a l con junc t ion 
w a s s a t i s f i a b l e . The p r o c e s s t e r m i n a t e s . 

2. O t h e r w i s e , if, in the c u r r e n t con junc t ion , e a c h d i s junc t ion c o n ­
t a i n s at l e a s t one u n n e g a t e d a t o m i c s e n t e n c e , then the o r i g i n a l 
con junc t ion i s s a t i s f i a b l e ; l i k e w i s e if each d i s junc t ion c o n t a i n s 
a t l e a s t one n e g a t e d a t o m i c s e n t e n c e . The p r o c e s s t e r m i n a t e s . 
(This s t ep is due to H e r b e r t L. G r a y . ) 

3 . O t h e r w i s e , if the c u r r e n t con junc t ion c o n t a i n s a p a i r of d i s j u n c ­
t i ons w h o s e only m e m b e r s a r e , r e s p e c t i v e l y , an a t o m i c s e n t e n c e 
and the nega t ion of the s a m e a t o m i c s e n t e n c e , the o r i g i n a l con ­
junc t ion is u n s a t i s f i a b l e . and the p r o c e s s t e r m i n a t e s . 

4 . O t h e r w i s e , if t h e r e i s at l e a s t one d i s junc t ion which c o n t a i n s 
only one s e n t e n c e ( e i the r an a t o m i c s e n t e n c e or the nega t ion of 
an a t o m i c s e n t e n c e ) , we d e l e t e f r o m the conjunct ion a l l d i s j u n c ­
t ions con ta in ing tha t s e n t e n c e , and d e l e t e a l l ind iv idua l o c c u r ­
r e n c e s of i t s n e g a t i o n (~ S is the n e g a t i o n of S, and S the n e g a t i o n 
of ~ S) w h e r e v e r they o c c u r . Then r e t u r n to s t e p 1 . 

5. O t h e r w i s e , if any a t o m i c s e n t e n c e o c c u r s only unnega t ed t h r o u g h ­
out the e n t i r e conjunc t ion , o r o c c u r s only n e g a t e d , e l i m i n a t e all 
d i s j unc t i ons which con ta in i t . Then r e t u r n to s t ep 1 . 

6. O t h e r w i s e , we have the s i t u a t i o n that e v e r y a t o m i c s e n t e n c e 
o c c u r s both n e g a t e d and u n n e g a t e d in the con junc t ion , and no 
d i s junc t ion con t a in s l e s s than two m e m b e r s . W r i t e t h e r e ­
f o r e , the conjunct ion in the f o r m 

(AV Dl) & ... &(AV Dm) &(~AV Ei) &... & ( ~AV E^) &Gi &... &Gr 

and then w^rite 

(DiVEi) &.. .&(DiVEn)&(D2VEi)&.. .&(D2VEn)&.. .&(Dj„VEi)8c. . . & 

(DjnVE^)&Gi&.. .&Gj. , 

a con junc t ion of d i s j u n c t i o n s in which the a t o m i c s e n t e n c e A does 
not o c c u r . The Di, E ; , and Gj^ a r e d i s j u n c t i o n s involv ing a t o m i c 
s e n t e n c e s o t h e r than A. Then r e t u r n to s t e p 1 . 



In the above p rocess , each step where a new conjunction is obtained 
with at least one less atomic sentence occurring in it than in the conjunction 
from which it was obtained ca r r i e s with it the assurance that the new sentence 
is truth-functionally satisfiable if and only if the old one i s . Proofs may be 
found in the paper by Davis and Putnam cited previously. 

Each time an i teration of the process is car r ied out, at least one 
atomic sentence is removed, and hence the entire process te rminates in a 
decision, as to satisfiability or unsatisfiability of the starting conjunction, 
in at most k i terat ions. In pract ice , far fewer i terations than k a re found to 
be required for most cases that a re actually encountered. 
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CHAPTER III. THE PROGRAM G A M M A I 

1. The language used by GAMMA I 

The actual artificial language employed by GAMMA I is but a sub­
language of that described in Chapter I. GAMMA Ts language contains no 
functional variables and no functional constants. Hence, all of its t e rms 
are either individual variables or individual constants. Despite this 
apparent loss of expressive power, we still in fact have just as expressive 
an instrument as before; now, however, in order to state certain things, 
we must r e so r t to a slightly less convenient and familiar technique of 
formulation. Instead of saying, e.g., 

2 • X -I- 4 = y . , (1) 

we must introduce a relational constant, say E, and write 

E(x, y) , (2) 

defining E to be such a relation that (2) is true for just those ordered 
pairs of constants for which (l) is t rue. 

By this subterfuge we can reformulate any assert ion, or predicate, 
which involves functional variables or functional constants, by introducing 
relational variables or relational constants. 

A further restr ic t ion on GAMMA I's language is that we may use no 
more than three arguments in any predicate. This still leaves us with 
plenty of room to operate; most of the interesting examples require no more 
than th ree - t e rm relations. The reason for this res tr ic t ion is that it ren­
dered the programming problem immeasurably easier . It is planned that in 
GAMMA II no such restr ict ion will be imposed, and the full apparatus of the 
language introduced in Chapter I will be the language employed. 

In addition to these quite major res t r ic t ions , several minor ones 
should be pointed out. By confining ourselves to fixed-format data fields 
in GAMMA I's design, we createdthe restr ic t ion that no more than 255 dif­
ferent relational variables could be employed, no more than 255 different 
individual variables , and no more than 255 different individual constants. 
These are minor simply because problems which would not fit within them 
would be already absurdly infeasible problems for GAMMA I, on other 
grounds entirely. We shall be discussing these other grounds later. 

2. Atomic sentences and predicates and negations thereof: l i tera ls 

Let us for convenience use the word "l i teral" to denote indifferently 
an atomic sentence, an atomic predicate, or a negation of either. The t e rm 
is due to Davis and Putnam. 
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The b a s i c 36 -b i t 704 w o r d p r o v i d e s the f r a m e for the s t r u c t u r e of 
a t o m i c s e n t e n c e s and p r e d i c a t e s in GAMMA I ' s l anguage . The w o r d i s 
d iv ided into four f ie lds of 9 b i t s e a c h ( s e e d i a g r a m ) . E a c h f ield is s u b ­
div ided into two subf ie lds , the f i r s t be ing the l e f t m o s t bi t , the s e c o n d be ing 
the o the r e ight b i t s . 

Relational Variable 
Field Argument Fields 

i 

Negation Sign Field; 
'0' for unnegated, 
'1' for negated literals 

Relational 
variable 

Individual variable 

Individual constant 

•0* for constant. 
'1* for variable 

In each of the four e igh t -b i t f i e lds , we m a y put any one of the 255 
e igh t -b i t p a t t e r n s , 00000001 th rough 111 11111, to i n d i c a t e which s y m b o l 
( r e l a t i ona l v a r i a b l e , individual v a r i a b l e , or ind iv idual c o n s t a n t , depend ing 
on which field and, in the second two c a s e s , on which of ' 0 ' o r ' 1' o c c u p i e s 
the l e f tmos t b i t - p o s i t i o n in the field) we have s e l e c t e d to put t h e r e . Sin­
gu l a ry and b i n a r y p r e d i c a t e s u s e only one (the f i r s t ) and only two (the 
f i r s t and second) , r e s p e c t i v e l y , of the t h r e e a r g u m e n t f i e lds , the u n u s e d 
ones being left wi th b i n a r y z e r o s in each b i t - p o s i t i o n . Nega t ion of the 
whole a t o m i c s en t ence is i nd ica ted by a ' 1 ' in the f i r s t bi t pos i t ion ; l a ck of 
nega t ion by a ' 0 ' t h e r e . 

Which e igh t -b i t p a t t e r n s a r e u s e d to r e p r e s e n t which r e l a t i o n a l 
v a r i a b l e s or which individual v a r i a b l e s h a s been left to the d i s c r e t i o n of 
the u s e r of the p r o g r a m : but the individual c o n s t a n t s a r e c o n s i d e r e d by 
the p r o g r a m to be o r d e r e d in t he i r n a t u r a l o r d e r f r o m 00000001 to 
11111111, for the p u r p o s e s of c a r r y i n g out the i n s t a n t i a t i o n p r o c e s s w i t h ­
in the p r o c e d u r e H. If the p r o g r a m is a l lowed to r u n for so long a t i m e 
that the in s t an t i a t i on p r o c e s s ca l l s for the subs t i t u t i on of an ind iv idua l 
cons tan t beyond l l l l l l l l in th i s o r d e r i n g , it t e r m i n a t e s at t ha t po in t 
with a p r i n t e d explana t ion of i t s r e a s o n for having s topped . I t s c a p a c i t y 
has been r e a c h e d in th i s d i r e c t i o n . ( T h e r e a r e o the r w a y s in which i t s 
capac i ty can b e c o m e e x h a u s t e d a l so : t h e s e wi l l be exp l a ined in the 
a p p r o p r i a t e p lace . ) 

3. Dis junc t ions of l i t e r a l s 

Since the s e n t e n c e s m a n i p u l a t e d by GAMMA I a r e at a l l t i m e s in 
p r e n e x conjunct ive n o r m a l f o r m , we a r e ab le to r e p r e s e n t t h e m wi thou t 
expl ic i t ly employing s y m b o l s for e i t h e r d i s junc t ion o r conjunc t ion . 
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To represen t a disjunction of N l i terals we simply construct a se ­
quence containing the N words encoding the l i te ra ls , and prefix at the front 
of the sequence a further word containing the integer N in the FORTRAN 
integer word format, viz., with low-order bit in the 18th bit position (a posi­
tion helpfully designated as the seventeenth, under IBM's conventions, which 
involve denoting the first position as 'S' (for 's ign') , the second as first, 
the third as second, and so on). 

A conjunction of M disjunctions is then represented by a sequence 
of M such sequences as were defined in the previous paragraph, the whole 
sequence being prefixed by a word containing an integer, in FORTRAN in­
teger word form, giving the total number of words which are contained in 
the M disjunctions, (it would have been nicer if the integer to be specified 
were M; but life is not like that, always.) Included in this count must be the 
words prefixing each disjunction. As a schematic il lustration, consider 

(14) (1)(A) (3)(A)(B)(D) (2)(C)(D) ( 4 ) ( A ) ( G ) ( H ) ( K ) . 

The le t ters represent l i te ra ls : there are four disjunctions, containing, 
respectively, one, three, two, and four l i te ra ls , as indeed their respective 
"counters" (as we shall henceforward often refer to them) indicate. The 
total number of words, including the four counters as well as the l i tera ls , 
is fourteen, and the leading word so indicates. 

By this means we avoid the necessity of employing special symbols 
for conjunction and disjunction, at the expense of having to use the counters; 
these, however, facilitate the internal computer processing of the sentences 
enormously. 

4. The Quantifier Prefix 

The remaining portion of a sentence in prenex conjunctive normal 
form, over and above the conjunction of disjunctions of l i terals which com­
pr i ses its matrix, consists of the initial sequence of zero, one or more 
quantifiers which bind the individual variables within the matrix. 

It turned out to be far more efficient for GAMMA I to put its quanti­
fier prefixes, not at the beginning, and in the natural order , but ra ther at 
the end, and in the r eve r se order . In constructing sentences for input to 
GAMMA I, therefore, that is where we put, and that is the order in which 
we put, the "prefix" (a designation no longer very appropriate) . 

If the total number of quantifiers in the prefix is K (including the 
case K = 0), we first put K, as a FORTRAN integer-word, immediately 
after the last word of the matr ix . We then put successively a FORTRAN 
integer-word for each quantifier, with positive sign indicating universal , 
negative sign existential, quantifiers. The integer used in each quantifier 
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is that corresponding to the bit pattern representing the individual variable 
belonging to the quantifier, i.e., we simply place the bit pattern itself with 
its rightmost bit in the 18th bit position of the quantifier word. Of course, 
if K = 0, we do not put any quantifier words after the prefix counter. But 
the zero word is mandatory, for the counter itself. GAMMA I takes the pre­
fix counters quite seriously. 

5. The Input to GAMMA I 

Thus we construct the sequence of 704 words which is a representa­
tion of a sentence in prenex conjunctive normal form for GAMMA I. A set 
of such sentences, comprising the initial list for the procedure H, is r ep re ­
sented by sticking the respective word sequences end-to-end to form one 
single sequence containing, let us say, W words in all (including all of the 
various counters). The number W is supplied to GAMMA I as the value of a 
FORTRAN integer variable MATEND. The number of sentences in the list 
(i.e., the number of the prenex conjunctive normal form sentences) is like­
wise supplied, as the value of a variable JLINE. The highest individual 
constant which occurs anywhere in the input list of sentences is considered 
as an integer in the obvious way and supplied as the value of a variable 
LPHI. 

The sequence of words comprising the list of sentences after the 
above fashion is given to GAMMA I as a one-dimensional FORTRAN array 
MATRIX. MATRIX (1) is thus the first word of this ar ray , and MATRIX 
(MATEND) the last word of this ar ray . 

The final major piece of input information required by GAMMA I is 
a list of numbers stating respectively in which word of the a r ray MATRIX 
the successive prenex conjunctive normal form sentences begin. (The first 
such number clearly is always 1.) This list of numbers, in ascending 
order, is given as a one-dimensional FORTRAN ar ray LINE. LINE (l) is 
thus the first word of this array; LINE(JLINE) is the last. 

We have also provided, as a convenience, for up to 120 words of 
BCD comment data, which is read in along with all the other information at 
input time and used essentially as a label for the problem. Any mater ia l 
capable of being printed may be put in the comment a r ray , which is formally 
a FORTRAN one-dimensional a r ray LEAD. The number of words actually 
used is supplied as the value of a variable LEADMX, and thus the a r ray 
will begin with LEAD(l) and end with LEAD(LEADMX). 
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Physically, an input deck of cards is prepared as follows: 

1st card: 

In four successive 6-column fields, beginning with column 1, the 
values of MATEND, JLINE, LPHI, and LEADMX are punched, hard 
over to the right of each field, with leading zeros either left blank 
or not, as one pleases . 

2nd through kth cards: 

(where k is no greater than it must be in relation to the value 
assigned to LEADMX.) The comment is punched, 6 characters to a 
word, 12 words to a card. It is not mandatory that LEADMX be a 
multiple of 12. 

(k-l-l)st card onwards: 

Each card has five successive fields of 14 columns, starting with 
column 1; in the rightmost 12 columns of each field are punched, in 
octal form, the words of the a r ray LINE followed by the words of 
the a r ray MATRIX. There will therefore be (JLINE -I- MATEND) 
octal words in all. 

Such a deck is the entire input information required for a problem. 
GAMMA I will handle one problem after another, and we simply stack the 
respective decks on top of each other, in the desired order, in the card 
reader . After having processed the last deck in such a batch of problems, 
GAMMA I selects the card reader in quest of another; finding none, it stops, 
and this is the normal manner for a run to terminate . This is indeed the 
only stop not deemed worthy of a printed comment at the on-line printer . 

After having processed a problem, GAMMA I prints the entire com­
ment a r ray LEAD at the on-line printer , followed by its verdict (INCON­
SISTENT or CONSISTENT), followed by the number of minutes which were 
required to complete the procedure H and find the proof. If a problem were 
submitted which was not in fact inconsistent (a synonym for unsatisfiable), 
and which was not in the category for which the instantiation process 
te rminates , then, whereas the theoretical procedure H for such a problem 
goes on for all eternity, GAMMA I goes on until its capacity is exhausted 
in one or other of the several ways in which this can occur. Since this 
could be quite a long time, a way has been provided to terminate a problem 
arb i t ra r i ly and peremptorily from the console: sense switch 2 is pushed 
down, and GAMMA I prints out an appropriate comment at the on-line 
pr inter and moves on to the next problem, if any. When this "get-off" 
facility is used, sense switch 2 should be placed UP again before the next 
problem deck has been entirely read in - otherwise it too will be summarily 
terminated. 
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In addition to the information supplied to the on-line printer at the 
end of each problem, fuller information is written on TAPE 2 pertaining to 
the problem just completed. In part icular , a copy is provided of the 
quantifier-free conjunction of sentences which was found to be inconsistent 
(or found to be consistent, in the case of a problem for which the instantia­
tion process happens to terminate, and which, in addition, happens to be 
consistent). The remaining information consists of the number of t imes 
the Davis-Putnam truth-functional analysis was performed, and the number 
of iterations of it which were required in the performance of its final, 
decisive application. 

After these notes about the observable behavior of GAMMA I, and 
the discussion of its input requirements, we now pass to an examination of 
the program itself. 

6. GAMMA I itself 

It seems reasonable to discuss GAMMA I's organization and s t ruc­
ture entirely on the FORTRAN symbolic statement level, the precise details 
of the compiled object program in SAP machine language not being necessary 
for a knowledge of the program's logical propert ies . 

The flow of events takes place essentially just as is specified in the 
theoretical algorithm which we have been calling procedure H. The original 
input a r ray MATRIX grows longer, for we add to it further sentences ob­
tained by instantiation, provided they have one or more quantifiers surviving 
in their prefixes. Those that do not, which are therefore quantifier-free 
sentences, we segregate, and stack them end to end in a new a r ray called 
MODEL. In doing so, we omit both the initial counter (which, one recal ls , 
gives the total number of words in the matr ix part of the sentence) and the 
terminal (zero) prefix counter. We can do without the former because we 
no longer need to preserve the separate identity of each sentence making 
up the quantifier-free conjunction, for we are building up but a single, long, 
sentence; and we can do without the latter because in the present context it 
tells us only something we already know - that there are no quantifiers in 
the prefix. The ar ray MODEL therefore grows longer as the procedure con­
tinues. Its length is at all times stored as the value of a variable, MODEND. 
As the ar ray MATRIX grows, so does the a r ray LINE, whose succeTH^^i 
entries tell where, in MATRIX, the successive sentences begin. The values 
of MATEND and JLINE, respectively, at all t imes tell how long each of these 
ar rays is . 

Eight thousand words of memory are available for the a r ray MATRIX 
18000 for the ar ray MODEL, and 2000 for the a r ray LINE. If at any point 
these storage areas are about to be exceeded, GAMMA I interrupts its 
orderly processes , prints out a comment appropriate to the occasion, and 
proceeds to the next problem, if any, in the input deck. 



25 

There are two modes in which GAMMA I operates as far as con­
cerns the matter of when to test MODEL by the Davis-Putnam process for 
satisfiability or unsatisfiability. The first mode is automatic, in which 
GAMMA I chooses for itself when to test, by a cri ter ion to be explained in 
a moment. The second is manual, whereby the decision when to test is 
made at the console. Which mode is operative is determined by the setting 
of sense switch 4: UP for automatic mode, DOWN for manual mode. In the 
manual mode, the decision to test is effected by depressing sense switch 5 
and raising it again when the READ-WRITE SELECT light is lit up. This 
phenomenon will occur after a second or two, and indicates that the Davis-
Putnam test procedure has gotten under way. 

The points at which testing is done when in the automatic mode are 
determined as follows: whenever, in the instantiation process , the sentence 
in MATRIX which is about to be instantiated is the first, the instantiation 
process is interrupted and a Davis-Putnam test of the current MODEL is 
performed. Whenever this point is found to have been reached, a test is 
also made to see whether the individual constant, which is about to be used 
to instantiate the first sentence with, is greater than the largest one intro­
duced so far. If it is , then the instantiation algorithm calls for termination. 
Therefore this fact is noted whenever it comes about, and GAMMA I does 
not proceed with the instantiation process after the Davis-Putnam test has 
been performed. Otherwise (unless the Davis-Putnam test turns up an 
inconsistency) the instantiation process is then resumed right where it was 
interrupted. 

Since the Davis-Putnam test is "destructive" in the sense that 
MODEL is successively reduced, perhaps to nothing, during the test, and 
since, should the instantiation process have to be resumed, MODEL must 
at that point be what it was before Davis-Putnam havoc was wrought upon 
it, we write it out on TAPE 3 prior to testing, along with the entire a r ray 
MATRIX. The lat ter a r r ay must also be "saved" because the Davis-Putnam 
test requires its storage area as an extensive "scratch pad" on which to 
make notes. Specifically, the Davis-Putnam process involves the construc­
tion of an a r r ay LIST during each iteration, the entries whereof are l i terals 
which are either the lone occupants of a disjunction, or are such as occur 
only unnegated, or only negated, throughout the entire MODEL. LIST is 
assigned the same 8000-word storage area as is MATRIX. 

Certain advantages are obtained in carrying out the Davis-Putnam 
test procedure if at all t imes the l i terals within each disjunction can be 
assumed to be in a fixed, known order . The handiest ordering to employ 
was found to be that obtained by pretending that each l i teral is really a 
35-bit binary number with a plus or minus sign attached, and then ordering 
the l i tera ls within each disjunction in ascending absolute magnitude. The 
necessary sorting is done immediately prior to appending a new quantifier-
free sentence to the end of MODEL. At this point is also performed the task 
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of deleting, within any one disjunction, all but one copy of any l i teral which 
happens to have one or more duplicates of itself as colleagues in the dis­
junction; and if a disjunction is found to have mutually contradictory l i terals 
within it (i.e., l i terals exactly alike except that one has a negation sign while 
the other does not), then the entire disjunction is deleted. (For such disjunc­
tions are true no matter what truth values are assigned to their atomic con­
stituents; hence a conjunction containing such a disjunction is inconsistent 
if and only if the remainder is.) 

The flow of events within the Davis-Putnam test procedure is, again, 
essentially given by the statement of the theoretical process described 
earl ier , which process the program car r i e s out as there stated. The precise 
details of the actual steps which are executed are best ascertained from the 
symbolic FORTRAN program listed in the Appendix, where the l iberal com­
ments there provided tell the story plainly enough. The present overall 
remarks are intended as no more than a helpful guide and companion during 
a scrutiny of the FORTRAN program. 

A word of running commentary on the way in which the instantiation 
process is done by GAMMA I. An ar ray LSTUPE is constructed during the 
process; its kth entry tells which sentence of MATRIX was last instantiated 
by the kth individual constant. In assessing the question "Which sentence of 
MATRIX should next be instantiated, and with what individual constant?", 
GAMMA 1 exploits LSTUPE as follows: one selects the first entry in LSTUPE 
which does not "point to" the final sentence in MATRIX. This entry is then 
increased by 1, and the sentence then indicated is selected for instantiation. 
If the entry is the ith in the a r ray LSTUPE, then the ith individual constant 
is used to do the instantiation of the selected sentence. However, if all the 
entries in the ar ray LSTUPE point to the final sentence in MATRIX, then 
a new entry numerically equal to zero is added. This indicates that none of 
the sentences of MATRIX have yet been instantiated by the corresponding 
individual constant, but that the first sentence of MATRIX is just about to be. 

Finally, a useful feature has been incorporated into GAMMA I to en­
able the user to have a picture of what is going on during internal processing. 
The register MQ is not required during the processing, either in the instan­
tiation section of the program or in the Davis-Putnam section of the program. 
Two numbers are therefore displayed on the console MQ neons, and their 
behavior indicates how far GAMMA I has progressed with the problem at 
the time. 

During the instantiation process, we display in the left half of MQ 
the number of sentences currently in MATRIX, and in the right half of MQ 
the number of quantifier-free sentences which have so far been added to 
MODEL. 
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During the Davis-Putnam process we display in the left half of MQ 
the current length (total number of words) of MODEL, and in the right half 
of MQ the number of i terations so far car r ied out of the Davis-Putnam 
procedure. 

Depressing sense switch 3 at any time causes GAMMA I to report 
at the on-line printer the sentences which it is getting via the instantiation 
process . 

Depressing sense switch 1 causes GAMMA I to report , during the 
Davis-Putnam tes ts , the successive appearances of MODEL as it is reduced 
at each iteration. 
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C H A P T E R IV. SHORTCOMINGS OF GAMMA I. GAMMA II. 

In the In t roduc t ion the r e m a r k was m a d e tha t , owing to t h e o r e t i c a l 
p r o p e r t i e s of the p r o c e d u r e H, the p r o g r a m GAMMA I h a s m a r k e d l i m i t a ­
t ions as to what k inds of p r o b l e m it i s c apab l e of handl ing in a r e a s o n a b l e 
span of t i m e . Spec i f ica l ly , t h i s i s due to the fact tha t , for m o s t " i n t e r e s t i n g " 
(and t h e r e f o r e suff ic ient ly c o m p l e x - s t r u c t u r e d ) a x i o m s e t s , and, for a 
given i n t e r e s t i n g a x i o m se t , for m o s t i n t e r e s t i n g t h e o r e m s deduc ib l e f r o m 
it . the va lue of x g u a r a n t e e d to e x i s t (whe re x, it wil l be r e c a l l e d , i s the 
e a r l i e s t s t ep of the i n s t a n t i a t i o n p r o c e s s at wh ich a t r u t h - f u n c t i o n a l l y un ­
sa t i s f i ab l e s en t ence is obtained) by the t h e o r y is a s i c k e n i n g l y l a r g e 
n u m b e r . 

An example of th is s i tua t ion was m e t e a r l y in the t e s t i n g of GAMMA I. 
The ax iom s y s t e m which was f o r m a l i z e d was tha t for e l e m e n t a r y a b s t r a c t 
g roup t h e o r y . The a x i o m s a r e t h r e e in n u m b e r , and s i m p l e - l o o k i n g ( "o" is 
a b i n a r y functional v a r i a b l e ) : 

(Ax)(Ay)(Ez)(x = zoy) (l) 

(Ax)(Ay)(Ez)(x = yoz) (2) 

(Ax)(Ay)(Az)(xo(yoz) = (xoy)oz) . (3) 

F r o m these a x i o m s we sought to p rove the t h e o r e m tha t an iden t i ty 
e l e m e n t e x i s t s ; indeed, we con ten ted o u r s e l v e s with the w e a k e r t h e o r e m 
that t h e r e e x i s t s a left ident i ty e l e m e n t : 

(Ex)(Az)(z = xoz) . (4) 

A l g e b r a i c a l l y humble though th i s e x a m p l e be , it i s not wi thout s o m e 
i n t e r e s t ; the proof of it, whi le not difficult , i s not t r i v i a l e i t h e r . Al l in a l l , 
it was felt tha t it was a r e a s o n a b l e e x a m p l e of a n o n t r i v i a l t h e o r e m which 
migh t be within the r ange of GAMMA I. 

It is no t . If a p p e a r s , by an a r g u m e n t which wi l l not be g iven h e r e , 
tha t the e a r l i e s t va lue of x to which GAMMA I would have to go in o r d e r to 
get a proof of (4) f rom [ ( l ) , (2), (3)] is at l e a s t 57*, o r about 2 . 1 0 ' ^ 

The i rony of the s i t ua t ion is that , in the couple of t r i l l i o n or so 
q u a n t i f i e r - f r e e s e n t e n c e s which GAMMA I would have to g e n e r a t e by i n ­
s t an t i a t ion , only four a r e ac tua l ly r e q u i r e d to p r o d u c e the r e q u i s i t e con ­
t r a d i c t i o n . It IS t h e s e four, t o g e t h e r with a m e r e handful of o t h e r s , wh ich 
any good s tudent of m o d e r n a l g e b r a would s e l e c t a s a proof of (4) f r o m 
[(1), (2). (3)] . 

P r o c e d u r e H is in fact what one m i g h t ca l l an e x h a u s t i o n a l g o r i t h m : 
the d e s i r e d ent i ty i s . if it e x i s t s at a l l , c e r t a i n l y a m e m b e r of an e f fec t ive ly 
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enumerable set; very well then, says an exhaustive algorithm, let us list 
the set, member by member, and see if the entity turns up. [Actually, the 
t e rm 'algori thm' is a misnomer, since the process described will not t e r ­
minate if (a) the enumeration does not terminate (i.e., the set is not finite) 
and (b) the desired entity is not in the set.] 

The contrast is between methods calling for the examination of 
"all" possibil i t ies, on the one hand, and methods which somehow select 
from the totality of possibilities a subset thereof which contains only the 
likelier possibi l i t ies . Clearly, the second category of methods embraces 
those distinguished by their employment of so-called s t ra tegies . At the 
very least, such methods are less uniform, more flexible, than exhaustive 
methods, and in some sense the flow of events ensuing when such a method 
is applied to a part icular problem is very much a function of the specific 
propert ies of the part icular problem. 

Apart from its being a uniform, exhaustive method, procedure H 
also is formulated within a fairly spartan syntactical s t ructure . It is in 
fact less easy to "spot" proofs, within the s t ructure operated on by pro­
cedure H, than it is to spot them in the r icher (though not more powerful) 
languages in which intuitive deductions are made, and then to t ranscr ibe 
them, or otherwise use them, to discover corresponding proofs within the 
more austere system. 

The next program which is planned, GAMMA II, will embody some 
ideas, still somewhat in the formative stage, for selecting paths of in­
stantiation on the basis of the part icular structure of each problem, which 
should contain the desired contradiction if indeed there is one contained 
in the single, uniform path of instantiation followed by procedure H. This 
problem is much eas ier to handle within a system which explicitly contains 
functional signs (variables and constants) and which also contains the 
identity relation as part of the underlying logical machinery, with associ ­
ated rules of deduction. It already is clear that, for instance, the group 
theory problem can be solved by a fairly simple generalization of the in­
stantiation procedure, car r ied out within a language possessing function 
signs and the identity relation as a part of its deductive machinery. But 
it is not yet clear to what level of difficulty of theorems such a generalized 
and r icher procedure will be able to penetrate . 
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APPENDIX. THE SYMBOLIC FORTRAN PROGRAM GAMMA I. 

1 . Annotated glossary of FORTRAN symbols occurring in GAMMA I. 

The following complete alphabetically ordered list of FORTRAN 
symbols which occur in GAMMA I, together with the definitions and ex­
planations attached to each, should facilitate the task of understanding the 
program listing. In the cases where synonyms occur, they were introduced 
into the program because the information they car r ied had sometimes to be 
treated as a FORTRAN integer (and as such had to be named by a symbol 
beginning with I , J , K , L , M , o r N ) and other t imes as a word of "Boolean" infor­
mation, for which a symbol not beginning with I, J, K, L, M, or N is required. 

ALIST 

ATRIX 

FIRST 

GEORGE 

I MAX 

INSTA 

INSTB 

INSTC 

INSTD 

ITERAT 

JLINE 

JUNK 

Synonym for LIST. 

Synonym for MATRIX. 

Used to store the variable which is going to be instantiated; 
bit pattern is adjusted so as to be in alignment with first 
argument field of the l i tera l . 

Used during the construction of LIST in connection with the 
tagging of l i terals which are to be deleted from LIST before 
LIST is actually used. 

General-purpose indexing variable used frequently in a r r a y -
manipulation. 

The counter whose value is the highest individual constant 
which is used next to instantiate a universally quantified 
var iable . 

Indicates the location of the matr ix counter of the sentence 
being processed, during instantiation procedure. 

Indicates the location of the prefix counter of the sentence 
being processed, during instantiation procedure. 

Indicates the location of the last quantifier of the sentence 
being processed, during the instantiation procedure. 

Indicates the location of the first l i teral in the sentence being 
processed, during the instantiation procedure. 

Contains the count of the number of i terations so far, in the 
current Davis-Putnam test . 

General-purpose index variable, used frequently in a r ray 
manipulation. 

Contains the number of sentences in MATRIX. 

A scratch-pad variable used in assembling word to be d i s ­
played in MQ. 
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K G e n e r a l - p u r p o s e index v a r i a b l e , u s e d f r e q u e n t l y in a r r a y 

m a n i p u l a t i o n . 

L G e n e r a l - p u r p o s e index v a r i a b l e . 

LA Used a s coun te r in the t e s t to s ee how m a n y u n i v e r s a l 

q u a n t i f i e r s a r e in p re f ix of s e n t e n c e about to be i n s t a n t i a t e d . 

L A P S E D The n u m b e r of m i n u t e s t aken by a c o m p l e t e d p r o b l e m . 

LAST Ind i ca t e s the l a s t l i t e r a l in a d i s j un c t i o n , d u r i n g D a v i s -
P u t n a m t e s t . 

LASTM I n d i c a t e s l a s t l i t e r a l in a d i s junc t ion , d u r i n g the s o r t i n g 
o p e r a t i o n on the d i s j unc t i ons of a s e n t e n c e about to be added 
to MODEL. 

L A T E R T i m e , in m i n u t e s e l a p s e d s ince p r e v i o u s m i d n i g h t , a t which 
a p r o b l e m was f in i shed . 

LEAD The 1 2 0 - w o r d - m a x i m u m a r r a y con ta in ing BCD m a t e r i a l of 

the c o m m e n t a c c o m p a n y i n g the p r o b l e m . 

LEADMX The n u m b e r of BCD w o r d s in the c o m m e n t . 

LEAST Ind ica t e s the f i r s t l i t e r a l of a d i s junc t ion , d u r i n g D a v i s -
P u t n a m t e s t . 

LEASTM Ind ica t e s f i r s t l i t e r a l in a d i s junc t ion , du r ing s o r t i n g 
p r o c e d u r e . 

LENGTH The n u m b e r of w o r d s in the m a t r i x of the c u r r e n t s e n t e n c e ; 

in i n s t a n t i a t i o n p r o c e d u r e . 

LFIRST Synonym of F I R S T . 

LGEORGE Synonym of GEORGE . 

LINE 2 0 0 0 - w o r d - m a x i m u m a r r a y whose e n t r i e s give the l o c a t i o n s 

of the beginnings of s u c c e s s i v e s e n t e n c e s in MATRIX. 

LINES Coun te r : n u m b e r of q u a n t i f i e r - f r e e s e n t e n c e s ob t a ined so fa r . 

LIST 8 0 0 0 - w o r d - m a x i m u m a r r a y whose e n t r i e s a r e l i t e r a l s which 
a r e to be e l i m i n a t e d f r o m MODEL; in D a v i s - P u t n a m t e s t . 

LITS C o u n t e r : n u m b e r of l i t e r a l s in a d i s j u n c t i o n ; in D a v i s - P u t n a m 
t e s t . 

LN Ind ica t e s which s e n t e n c e of MATRIX i s about to be i n s t a n t i a t e d 
next . 

LNEG Is equa l to z e r o if a l l d i s j unc t i ons in M O D E L con t a in a n e g a t e d 
l i t e r a l ; equa l s one o t h e r w i s e . 

LOST Ind i ca t e s l a s t l i t e r a l in a d i s junc t ion ; in D a v i s - P u t n a m t e s t . 
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L P H I 

L P I V O T 

L P O S 

LSCOND 

L S T U P E 

L T E S T 

LTHIRD 

LUNGTH 

LUST 

LVALUE 

LVBLE 

LWORDl 

LWORD2 

LWORD3 

M 

MATEND 

MATRIX 

MAXK 

MODEL 

MODEND 

N 

NAXT 

H i g h e s t ind iv idua l c o n s t a n t u s e d so far to i n s t a n t i a t e an 
e x i s t e n t i a l l y quan t i f i ed v a r i a b l e . 

The l i t e r a l to be e l i m i n a t e d by s t e p (6) of D a v i s - P u t n a m 
p r o c e d u r e . 

Is equa l to z e r o if a l l d i s j u n c t i o n s in M O D E L con ta in an 
u n n e g a t e d l i t e r a l ; e q u a l s one o t h e r w i s e . 

Synonym of SECOND. 

1 0 0 - w o r d - m a x i m u m a r r a y whose i th e n t r y g ives which 
s e n t e n c e was l a s t i n s t a n t i a t e d by i th ind iv idua l c o n s t a n t . 

C o u n t e r : the n u m b e r of t i m e s the D a v i s - P u t n a m t e s t h a s 
been p e r f o r m e d so far in the c u r r e n t p r o b l e m . 

Synonym for THIRD. 

I n d i c a t e s l o c a t i o n of l a s t l i t e r a l in the m a t r i x p a r t of a 
s e n t e n c e ; d u r i n g i n s t a n t i a t i o n p r o c e s s . 

I n d i c a t e s the l a s t l i t e r a l of a d i s junc t ion ; in D a v i s - P u t n a m 
t e s t i n g p r o c e s s . 

Synonym for VALUE . 

I n d i c a t e s the ind iv idua l v a r i a b l e with r e s p e c t to which 
i n s t a n t i a t i o n wil l be done; du r ing i n s t a n t i a t i o n p r o c e s s . 

Synonym for WORDl . 

Synonym for WORD2. 

Synonym for WORD3 . 

G e n e r a l p u r p o s e indexing v a r i a b l e . 

Gives the length of the a r r a y MATRIX, v i z . , the to ta l n u m b e r 
of w o r d s in the a r r a y . 

The 8 0 0 0 - w o r d - m a x i m u m a r r a y con ta in ing al l the s e n t e n c e s 
which s t i l l have q u a n t i f i e r s left in t h e i r p r e f i x e s . 

Gives the l eng th of the a r r a y LIST. 

The 1 8 0 0 0 - w o r d - m a x i m u m a r r a y con ta in ing a l l the quan t i f i e r -

f r ee s e n t e n c e s . 

G ives the length of the a r r a y M O D E L . 

G e n e r a l - p u r p o s e indexing v a r i a b l e . 

I n d i c a t e s the loca t ion of the coun te r i m m e d i a t e l y in front of 
a d i s j unc t i on ; in D a v i s - P u t n a m t e s t p r o c e s s . 
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NEXT I n d i c a t e s the l oca t i on of the c o u n t e r i m m e d i a t e l y in f ron t of 
a d i s junc t ion ; in D a v i s - P u t n a m t e s t - p r o c e s s . 

N E X T M I n d i c a t e s the l oca t i on of the c o u n t e r i m m e d i a t e l y in f ron t of 
a d i s junc t ion in the s o r t i n g p r o c e s s . 

NOW The t i m e , in m i n u t e s e l a p s e d s i n c e p r e v i o u s m i d n i g h t , a t 
which a p r o b l e m is begun . 

NOXT I n d i c a t e s the loca t ion of the c o u n t e r i m m e d i a t e l y in f ront of 
a d i s junc t ion ; in D a v i s - P u t n a m p r o c e s s . 

O D E L Synonym for M O D E L . 

SECOND Used to s t o r e the v a r i a b l e which is going to be i n s t a n t i a t e d 
upon; bit p a t t e r n is ad jus t ed so a s to be in a l i g n m e n t with the 
second a r g u m e n t f ield of the l i t e r a l . 

THIRD Used to s t o r e the v a r i a b l e which i s going to be i n s t a n t i a t e d 
upon; bi t p a t t e r n is ad jus t ed so a s to be in a l i g n m e n t with the 
a r g u m e n t field of the l i t e r a l . 

VALUE The ind iv idua l c o n s t a n t which is going to be u s e d for i n s t a n t i ­
a t ion , with bit p a t t e r n ad jus t ed so a s to be in a l i g n m e n t with 
f i r s t a r g u m e n t field of l i t e r a l . 

VALUE2 The indiv idual cons t an t which is going to be u s e d for i n s t a n t i a ­
t ion, with bit p a t t e r n ad jus t ed so a s to be in a l i g n m e n t with 
second a r g u m e n t field of l i t e r a l . 

VALUE3 The indiv idual cons t an t which is going to be u s e d for i n s t a n t i a ­
t ion , with bit p a t t e r n ad ju s t ed so a s to be in a l i g n m e n t with 
t h i r d a r g u m e n t field of l i t e r a l . 

WORDl The con ten t s of the f i r s t a r g u m e n t f ield of a l i t e r a l , con tex t 
s t r i p p e d away . 

WORD2 The con ten t s of the s econd a r g u m e n t f ield of a l i t e r a l , con tex t 
s t r i p p e d away . 

WORD3 The con ten t s of the t h i r d a r g u m e n t f ield of a l i t e r a l , con tex t 
s t r i p p e d away . 

[X,Y,Z] T h r e e BCD w o r d s which s t a t e the da te and t i m e , w h e n e v e r 
the s u b r o u t i n e MINUTE is c a l l e d in . No u s e is a c t u a l l y m a d e 
of t h e s e t h r e e v a r i a b l e s beyond t h e i r funct ion a s the d u m m y 
v a r i a b l e s in the ca l l ing l ine of the s u b r o u t i n e . 
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C..«»...........,,.,„....,,.......•»••••••••••»••••••••••*»*••*»***••»• 
C» GAMMA I. A GENERAL THEOREM-PROVING PROGRAM. • 
C«*>>>••••*•**.......>...*..>«•••••••*>•••* »...»..........#........ 

DIMENSION MODEL(18000),ODELt18000),MATRIX(8000).ATRIX(8000), 
1 LINE(2000),LSTUPE(100),LIST(8000),ALIST(8000),LEAD(120) 
EQUIVALENCE (VALUE,LVALUE),(WORDl,LWORDl),(W0RD2,LW0RD2), 
1(WORD3,LWORD3),(MATRIX,ATRI X,LI ST,ALI ST),(MODEL,ODEL), 
2(FIRST,LFIRST),(SECOND,LSCOND),(THIRD,LTHIRD),(GEORGE,LGORGE) 

C>•*••>*>•••»•«•••.< ,...»..........•..................*..........• 
f OBTAIN INPUT FOR NEXT PROBLEM FROM CARD READER. • 
C>>>«<> ••••*>*••••••«•••>••••••••••••••••••••>•••*>•*>••>••>••••• ••**«•••• 

1 READ 1200, MATEND,JLINE.LPHI,LEADMX 
READ 1201,(LEAD(I),1=1.LEADMX) 
READ 1001,(LINEII),1=1,JLINE),(MATRIX(I),I=1,MATEND) 

C•••••>••••««•*•••* ». 
C» FIND OUT WHAT TIME IT IS. * 
C>>«>»•>••*•••••>**•*«>•>••>•••••*••*•••••*>*•>••**>•*«••>•••••••>••>••« 

NOW = MINUTE(X,Y,Z) 
C .•..»...........#....,.#.......».................»................ 
C» INITIALIZE THE COUNTERS WHICH WILL GROW, AND BE SURE ALL THE • 
C» SENSE LIGHTS ARE TURNED OFF. • 
C* >•••••••••<,<,»•••*•.•*..>....•*•.*•*.••*>••<,.••..>••*••*•••••••• ••••••* 

SENSE LIGHT 0 
U LSTUPE(l) = 0 

LINES = 0 
LTEST = 0 
MODEND = 0 
IMAX = 1 

C«»»»»•»»••»••»*•••••••••••••*•*»•»•••»*»»••••»*»»••••»••»*•••••*•••**•• 
C» TRY INSTANTIATING A SENTENCE WITH 1. • 
C»»»••»•••••••••»••••»•»••••*•«••••••••••••••••»»•»»•••»••••••••••»»*••• 

5 INS = 1 
C»»»«»•••••»••».••.»»»••••»••••••••••••••••••••••••••••«••*•»«•*•••**«•• 

C* SET UP THE LATEST PROGRESS REPORT IN THE MO CONSOLE NEONS. » 
C>***»*>•>••••••<»«•*•*•>••«•*•••***•••••••••••••••••••>*••••••••••••••• 
S CLA LINES 
S ARS 18 
S ADD JLINE 
S STO M 
S LDQ M 
C«>**><>«».>.•>•>«>•••*•***••*••••**•••• >••*•••*•••• 
C» QUIT IF FORCED TO DO SO. * 
c » » » . . . » » . . . . . » » * . . . . » » • » . • • • • • • • • » • • • • • • » • • • • • * * • * • • • * • » . . . . • . • • • . 

IF (SENSE SWITCH 2) 1900,6 
C.»••..........•.•.•.••»•••••••••»••••»«•*••••***••****••** ».»•••• 

C» CAN ANY SENTENCE BE INSTANTIATED WITH INS, WE ASK. • 
C>><»*>**><0«>>«>>> ...,,...........»..•.»•.••••»*•••••••«•••••••** 

6 IF (LSTUPE(INS) - JLINE) 9,7,9 
C».......•...«••.»••»»•••••••«••••••»•••*•**•*****• ..»....•»...•. 

C« IF NOT, STEP UP INS, AND THEN UNLESS INS IS NOW UP TO TESTING • 
C» SIZE, GO SEE WHETHER WE CAN INSTANTIATE A SENTENCE WITH THIS * 
C» HIGHER VALUE. IF INS IS UP TO TESTING SIZE, GO REPORT TO STATEMENT • 
C» 8000, WHERE THE MATTER WILL BE MORE CLOSELY PURSUED. * 
c « . . • » • • • • • • • • » • • * • • • • * • • * * • * * * • * * • * * • * • * * * • » * * * * * * * * * * * • * * * * * * * * * * * • • * • 

0000 
0001 
0002 
0003 
OOOM 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0011) 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0021* 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
003U 
0035 
0036 
0037 
0038 
0039 
OOUO 
OOUI 
001i2 
00ii3 
OOUU 
001(5 
00l»6 
00U7 
O0U8 
001*9 
0050 
0051 
0052 
0053 



36 

7 INS = INS + 1 0051 
IF (INS - IMAX) 6,6.8000 0055 

C><>.< •••>••••>• 0056 
C. WE "AY PROCEED. EVIDENTLY. THE TESTING CRISIS MUST BE OVER. • 0057 
C*»•........•......»*...••».•«.*.•*..»..**»•••*••*••*..........**••••*•* 0058 

B LSTUPE(INS) = 0 0059 
IMAX = INS 0060 
GO TO 6 C06 1 

C...........................................*"**»•*•*••********••*•••*** 0062 
C KE CAN INSTANTIATE WITH INS. SET UP THE SENTENCE DUE FCR • C063 
C» INSTANTIATION WITH INS. * C06't 
C............................»........»•.*•»••*•*•*•*•**••••**********•* 0065 

9 LSTUPE(INS) = LSTUPE(INS) • 1 0066 
LN = LSTUPEI INS) 0067 
INSTA = LINE(LN) 0068 
INSTB = MATRIX(INSTA) + INSTA + 1 0069 
INSTC = MATRIXfINSTB) + INSTB 0070 
LVBLE = XABSFIMATRIXIINSTC)) 0071 
INSTD = INSTB + 1 0072 

C. 0073 
C. WAIT. IF WE INSTANTIATE THIS SENTENCE, WE WANT TO KNOW WHETHER . 0071) 
C» WE WILL WIND LP WITH A CUANTIFIER-FREE SENTENCE OR NOT. IF THIS . 0C75 
C. SENTENCE HAS LESS THAN TWO UNIVERSAL QUANTIFIERS IN ITS PREFIX. . 0076 
C. THE RESULT CF INSTANTIATION WILL BE A OUANTIF 1ER-FREE SENTENCE. . 0077 
C* SO WE COUNT THE NUMBER CF UNIVERSAL QUANTIFIERS IN THE PREFIX.... . 0078 
C........•••. 0079 

LA = 0 0080 
DO 11 K = INSTD. INSTC 0081 
IF (MATRIXIK)) 11. 10, 10 0082 

10 LA = LA + 1 0083 
11 CONTINUE 00811 

C*....»«»...*«...«...................*.................................. 00B5 
C. ....AND IF THERE ARE LESS THAN TWO WE PREPARE TO ADD THE RESULT » 0086 
C. TO MODEL.... . 0087 
C.......*.*.....................*........................«....*......«.. 0088 

IF (LA - 2) lit, 12, 12 0089 
12 M = MATEND 0090 

C....................................................................... 0091 
C* ...BUT IF THERE ARE TWO OR MORE WE PREPARE TO ADD THE RESULT TC . 0092 
C. MATRIX... . C093 
C....................................................................... 0091+ 

DO 13 N = INSTA, INSTC 0095 
M = M + 1 0096 

13 MATRIX(M) = MATRIX(N) 0097 
C........ 0098 
C. ...AND DEPART FOR STATEMENT 38 WHERE THIS WILL BE DONE. . 0099 
c * . . . . . . . . . . . . . . . . . . 0100 

INSTB = "ATENC + MATRIX(INSTA) + 2 0101 
INSTA = MATEND + 1 0102 
LVALUE = INS 0103 
GO TO 38 OlOU 

C.........................................».......»«»...*.»*............ 01 05 
C. SET UP ON TO THE END OF MODEL THE SENTENCE TO BE INSTANTIATED. . 0106 
C.. 0107 
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1U M = MODEND 0108 
LENGTH = MATRIXIINSTA) 0109 
INSTC = INSTA + 1 0110 
DO 15 N = INSTD,INSTC 0111 
M = M t 1 0,,2 

15 MODELIM) = MATRIX(N) 0113 
INSTR = MCDEND + MATR IX ( I NSTA) *• 1 0 I 1 It 
INSTA = MCDEND + 1 0115 

16 LVALUE = INS 0116 

C GET RIO CF ALL THE EXISTENTIAL QUANTIFIERS AS WELL AS THE . 0118 
c. UNIVERSAL QUAN T I F I E R . . 0119 
C.............................. ,.. 0,20 

0121 
0122 
0123 
CI211 
0125 
0126 
0127 
0128 
0129 
0130 
0131 

S 17 CLA LVBLE 
S STO FIRST 
S ARS 9 
S STO SECOND 
S ARS 9 
S STO THIRD 
S CLA LVALUE 
S ARS 9 
S STO VALUE2 
S ARS 9 
S STO VALUE3 

B FIRST = FIRST + OOOitOOOOOOCO 0132 
B SECOND = SECOND + COOOOOitOOOOO 0133 
B THIRD = THIRD * COOOOOCOOI4OO 013U 

DO 23 L = INSTA, INSTB 0135 
B WORDl = ODEL(L) . 000777000000 0136 
B WCR02 = ODELIL) . 00C0C077700O 0137 
B W0RD3 = CCEL(L) . 000000000777 0138 

IF (LWORDl - LFIRST) 19, 16, 19 0139 
B 18 ODEL(L) = ODEL(L) . 777000777777 + VALUE OIUO 

19 IF (LW0RD2 - LSCOND) 21, 20, 21 OIUI 
B 20 CCEL(L) = ODELIL) . 777777000777 + VALUE2 0)1*2 

21 IF (LK0RD3 - LTHIRD) 23, 22, 23 0Iit3 
B 22 ODELIL) = ODELIL) . 777777777000 + VALUE3 01UU 

23 CONTINUE OlitS 
MODELIINSTB) = MCDEL(INSTE) - 1 011t6 
LASTM = MCDEL(INSTB) + INSTB 011(7 
IF (MODELI INSTB) ) 25, 25. 2U Cliie 

21* LVALUE = LPHI + 1 011*9 
LPHI = LVALUE 0150 
LVBLE = XABSF(MODEL(LASTM)) 0151 
GO TO 17 0152 

25 LASTM = INSTA - 1 0153 
LUNGTH = MODEND + LENGTH 0151* 

C....................................................................... 0155 
C PRINT CUT THE RESULT IF REQUESTED. » 0156 
C....................................................................... 0157 

IF (SENSE SWITCH 3) 252. 251 0158 
252 PRINT 1001(. LVALUE. ( MODEL ( N ) ,N= I NSTA . I NSTB ) 0159 

C......*....•....•.».........»...................*...*•»................ 0160 
C SORT EACH DISJUNCTION WITHIN THE NEW QUANTIFIER-FREE SENTENCE. . 0161 
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C 0162 
251 NEXTM = LASTM + 1 C163 

IF (NEXTM - (MODEND •* LENGTH + D ) 26. 35, 35 C161( 
26 LEASTM = NEXT" + 1 0165 

LASTM = MODELINEXTM) + NEXTM 0166 
K = LASTM - 1 0167 
IF (MODEL(NEXTV) - 1) 251, 251, 27 0168 

27 DO 31 L = LEAST*-, K 0169 
IF(XAESF(M0DEL(L1) - XAPSF(MODEL(L + 1))) 31, 29, 28 0170 

28 " = MODEL(L + 1) 0171 
MODEL (L + 1) = MODEL(L) 0172 
"ODEL(L) = M 0173 
SENSE LIGHT 1 0171* 
GO TO 31 0175 

29 IF {MODEL(L) + •'OnEL(L + 1)) 30, 32, 30 0176 
30 MODEL(L) = 0 0177 

MODELINEXTM) = "OCEL(NEXTM) - 1 0178 
31 CCNTir:uE 0179 

IF (SENSE LIGHT 1) 27, 251 0180 
32 IF(MOCEL(L)) 33. 31. 33 0181 

C..... 0182 
C. IF A DISJUNCTION IS LOGICALLY TRUE, DELETE IT. . 0103 
C..» 0181* 

33 DO 31( L = NEXTM, LASTM C1P5 
3i( "ODELIL) = C C186 

GO TC 251 0187 
C . . . 0188 
C. PACK rOVN THE POSSIBLY DEPLETED SENTENCE. . 0189 
C..................................*.............><,...••«............... 0190 

35 CO 37 N = INSTA,LUNGTH 0191 
IF (MODEL(N)) 36, 37, 36 0192 

36 "ODENC = MCDEND + 1 0193 
MCDFLIMODEND) = MODEL(N) Ol?"* 

.'57 CONTINUE 0195 
C............. 0196 
C. PRINT IT CUT IF REQUESTED. . 0197 
C.....«.*........»...................................................... 0198 

IF (SENSE SWITCH 3) 371, 372 0199 
371 PRIrjT 1006, MODEND 0200 

PRINT 1000, (MODEL(N), N=INSTA,MODEND) 0201 
372 CONTINUE 0202 

Co..................................................................... 0203 
C QUIT, IF WE ARE OUT CF CAPACITY FOR MODEL. OTHERWISE, GO . 0201* 
C. INSTANTIATE THE NEXT SENTENCE. . 0205 
C......................»................,.,....,,,......,,.,,,.,...,,... 0206 

LINES = LINES + 1 0207 
IF (MODEND - 17950) 5, 1900, 1900 0208 

C.................. 0209 
C. INSTANTIATE THE LEADING UNIVERSALLY QUANTIFIED VARIABLE, ANC ANY . 0210 
C. EXISTENTIAL QUANTIFIERS WHICH ARE THEREBY EXPOSED. . 0211 
C. ......,,.......„,,..,„,„,,. 02)2 
S 30 CLA LVBLE 0213 
S STO FIRST 021U 
S ARS 9 0215 
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S STO SECOND 0216 
S ARS 9 
S STC THIRD 
S CLA LVALUE 02i9 
S ARS 9 
S STO VALUE2 
S ARS 9 
S STC VALUE3 
B FIRST = FIRST + 0001(00000000 

0217 
0218 

0220 
0221 
0222 
0223 
022U 

B SECOND = SECOND *• 0000001(00000 0225 
B THIRD = THIRD + COCOCOOOOUCO 0226 

DO 1(1* L = INSTA, INSTB 0227 
B WORDl = ATRIX(L) . 000777000000 0228 
B W0RD2 = ATRIX(L) . 000000777000 0229 
B W0RC3 = ATRIX(L) . 000CCC000777 0230 

IF ILWORDl - LFIRST) UO, 39, 1(0 0231 
B 39 ATRIX(L) = ATRIX(L) . 777000777777 + VALUE 0232 

itO IF (LWCRD2 - LSCCND) it2, UI, lt2 0233 
B ltl ATRIX(L) = ATRIX(L) • 777777000777 + VALUE2 0231* 

h? IF (LW0RD3 - LTHIRD) kh, 1(3, UU 0235 
B 1(3 ATRIX(L) = ATRIX(L) . 77777777700C + VALUE3 0236 

ItM CONTINUE 0237 
MATRIXIINSTP) = MATRIX(INSTB) - 1 0238 
"ATEND = MATRIX(INSTP) t INSTB 0239 
IF (MATRIXIWATENCI ) 1*5,1(6,1*6 021*0 

lt5 LVALUE = LPHI + 1 021*1 
LPHI = LVALUE 02U7 
LVBLE = XABSF(MATRIX(MATEND)) 021(3 
IF (MATEND - 7750) 38, 1900,1900 021(i( 

1*6 JLINE = JLINE *• 1 021i5 
LINE(JLINE) = INSTA 021(6 

C....................................................................... 021(7 
C. PRINT OUT THE RESULT. IF REQUESTED. . 021(8 
C....................................................................... 021*9 

IF (SENSE SWITCH 31 1(61. 1(62 0250 
1(61 PRI'.T 1005, JLINE,LINE(JLINE),LVBLE.LVALUE 0251 

PRINT lOCC. (MATRIX(N),N=INSTA,MATEND) 0252 
1*62 CONTINUE 0253 

C....................................................................... 0251* 
C QUIT IF CAPACITY IS EXCEEDED. OTHERWISE GO INSTANTIATE THE NEXT • 0255 
C SENTENCE. . 0256 
C....................................................................... 0257 

IF (JLINE - 2000) 5. 1900.1900 0258 
C... 0259 
C STATEMENTS PO THRU 21t0 •>• 3 COMPRISE THE DAVIS-PUTNAM TEST PROCESS. . 0260 
C................... 0261 

80 LTEST = LTEST t 1 0262 
ITERAT = 0 C263 

C».............••.........•.........................*.•••.*••«.••....... 026U 
C» WE RETURN HERE FOR EACH NEW ITERATION. HERE WE FIRST INITIALIZE . 0265 
C. THE NECESSARY COUNTERS AND TESTING VARIABLES. . 0266 
C......................... 0267 
7115 LNEC = 0 0268 

LPOS = 0 0269 
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I T E R A T = I T E R A T + 1 

K = 0 

L A S T = 0 
c....................................................................... 
C. DISPLAY THE LATEST PROGRESS REPORT CN THE MQ CONSOLE NEONS. • 
c.................*........................*.....••*...•............*... 
S CLA ITERAT 
S ARS 18 
S ADD MODEND 
S STO JUNK 
S LDQ JUNK 
C....................................................................... 
C. PRINT OUT MODEL AS IT NOW STANDS. IF REQUESTED TO DO SO. . 
C....................................................................... 

IF (SENSE SWITCH 1) 3339. 110 
3339 PRINT 3997 

PRINT 3001. MODEND 
PRINT 1001. (MODEL(I).1=1, MODEND) 

C......... ......*..•.*....*.... 
C. MAKE A LIST OF ALL THE UNIT DISJUNCTIONS, I.E., THOSE CONTAINING . 
C. ONLY ONE LITERAL. . 
C.................•........................••.•••••••••«••••>*.•••«**... 

110 NEXT = LAST + 1 
IF (NEXT - MODEND) 120, 130, 130 

120 LEAST = NEXT + 1 
LAST = MODEL(NEXT) *• NEXT 
IF (MODEL(NEXT) - 1)I 00, 1UO,100 

lUO K = K + 1 
LIST(K) = MCDEL(LEAST) 

C.....................................................».*............... 
C AS EACH NEW UNIT DISJUNCTION IS ADDED TO THE LIST, CHECK IT AGAINST. 
C. THE EARLIER ONES TO SEE IF IT CONTRADICTS ANY OF THEM. IF IT DCES,. 
C» TERMINATE INCONSISTENT. . 
C....................................................................... 

DO 50 N = 1, K 
IF (LIST(N) + LIST(K)) 50,250,50 

50 CONTINUE 
C...............••.........*............................................ 
C SINCE WE ARE SCANNING ALL OF MODEL ANYWAY, LET US CHECK TC SEE IF . 
C (A) EACH DISJUNCTION CONTAINS AN UNNEGATED LITERAL, OR (B) EACH . 
C. DISJUNCTION CONTAINS A NEGATED LITERAL. . 
c ......................•................>....>................. 

100 DO 106 J = LEAST, LAST 
IF (MODEL(J)) 101, 106, 102 

101 SENSE LIGHT 1 
GO TO 106 

102 SENSE LIGHT 2 
106 CONTINUE 

IF (SENSE LIGHT 1) 108, 107 
107 LNEG = I 
108 IF (SENSE LIGHT 2) 110, 109 
109 LPOS = 1 

GO TO 110 
C...............................,.,,,.,.,,.,,,,,,,,,,,,.,.,.........^ 

0270 
0271 
0272 
0273 
027U 
0275 
0276 
0277 
0278 
0279 
0280 
0281 
0282 
0283 
028U 
0285 
0286 
0287 
0288 
0289 
0290 
029 1 
0292 
0293 
029U 
0295 
0296 
0297 
0298 
0299 
0300 
0301 
0302 
0303 
030U 
0305 
0306 
0307 
0308 
0309 
0310 
0311 
0312 
0313 
0311* 
0315 
0316 
0317 
0318 
0319 
0320 
0321 
0322 
0323 
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C» IF EITHER (A) OR (B) IS THE CASE, WE TERMINATE CONSISTENT. . 032U 
C OTHERWISE, IF WC HAVE ANY UNIT DISJUNCTIONS AT ALL ON THE LIST, . 0325 
C SET UP THE SITUATION TO DELETE THE FIRST OF THEM. • 0326 
C 0327 

130 IF (LPOS) 131. 260. 131 0328 
131 IF (LNEG) U997. 260. U997 0329 

U997 IF (K)132.132.U998 0330 
U99e MAXK = I 0331 

GO TO 1U12 0332 
C. 0333 
C. IF WE HAVE NO UNIT DISJUNCTIONSLET US MAKE A LIST OF PURE LITERALS.. 033U 
C* A LITERAL IS SAID TC BE PURE IF EITHER ALL ITS OCCURRENCES IN THE . 0335 
C. MODEL ARE UNNEGATED OR ALL ARE NEGATED. . 0336 
0....................................................................... 0 3 37 

132 MAXK = 0 0338 
K = 0 0339 
LAST = 0 03U0 

C.. 03U1 
C. TURN ON THE SIGN BIT IN MC. . 03U2 
Q....................................................................... G3U3 
S STQ JUNK 03UU 
S CLA JUNK 03U5 
S SSM 03U6 
S STO JUNK 03U7 
S LDC JUNK 03U8 
C......*........«.............*..........*.............*............*.*. 03U9 
C. IF WE FIND THAT A LITERAL IS MIXED, I.E., NOT PURE, WE OMIT IT » 0350 
C. FROM THE LIST. BUT WE PUT A LITERAL ON THE LIST AS BEING PURE, * 0351 
C. UNTIL IT IS PROVED TO BE MIXED. WHEN WE FIND THAT A LITERAL IS . 0352 
C. MIXED, WE TAG ITS OCCURRENCE IN LIST (BY PUTTING A BINARY ONE IN . 0353 
C. IN THE SECOND BIT POSITION) SC AS TO KNOW IT MUST BE LATER . 035U 
C. REMOVED FROM THE LIST. » 0355 
C...........................................•• *•••• 0356 
8300 NEXT = LAST + 1 C357 

IF (NEXT - MCDEND) 8301, 8320, 8320 0358 
8301 LEAST = NEXT + 1 0359 

LAST = MODEL(NEXT) + NEXT 0360 
DO 8303 I = LEAST, LAST 0361 
DO 8302 J = 1, MAXK 0362 

B GEORGE = ALIST(J).577777777777 0363 
IF (LGORGE - MODEL(I)) 8305,8303,8305 036U 

8305 IF (LGORGE + MODEL(I)) 8302,830U,8302 0365 
Be30U ALIST(J) = ALIST(J) + 20C000000000 0366 

GO TO 8303 °\^l 
8302 CONTINUE " ° ° 

MAXK = MAXK + 1 °^°' 
LIST(MAXK) = MODEL(I) °iL° 

0372 
0373 

8303 CONTINUE 
GO TO 8300 

c........................*••*•»••••**•*•*••**•************************* 
C* DELETE FROM THE LIST ALL THE LITERALS WHICH ARE TAGGED. * 037U 
r.....................*......******************************** *********** 0375 
8320 DO 8325 1 = 1,MAXK " ^ ' 

B GEORGE = ALISTI I)*200000000000 " ' " 
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IF (LGORGE) 
832U LISTI11=0 
8325 CONTINUE 

C<«tt»«»**««»**«««» 

c THEN PACK DOWN 

c...............»» 
J = 0 
DO 8330 I = 
IF (LISTd)) 

8327 J = J *• 1 
LIST(J) = LI 

8330 CONTINUE 
C* 
C 
C 

c. 
c. 

c» 
c 
c. 
c. 

................ 
IF WE THEREBY ' 
IN MODEL ARE M 
GO TO THE DELE 

«...»....«...».. 
MAXK = J 
IF (MAXK) 16 

................ 
INITIALIZE, PR 
SEE WHETHER LI 
NEGATIONS OF L 

c....»«........... 
1U12 LAST = 0 

c.....»*.......»»» 
c. 
c» 
s 
s 
s 
s 
s 

TURN CFF THE S 

................ 
STC JUNK 
CLA JUNK 
SSP 
STO JUNK 
LDC JUNK 

C« * • • * « « ff*-******** 

c. 
c* 

PREPARE TO SCAI 

................ 
1U11 NEXT = LAST 

IF (NEXT - M 
1U2 LEAST = NEXT 

LAST = MODEL 
c....»»*.».»...».. 
c» 
c. 
c* 

IF THE DISJUNC 
LIST, DELETE T 

................ 
CO 1U3 J = L 
DO 1UU K = 1 
IF (MODEL(J) 

1U5 IF (MCDEL(J) 
1U6 MODEL(J) = 0 

MODEL(NEXT) 
GO TO 1U3 

c»...».».........* 
c. 
c 

IF THE DISJUNC 
ENTIRE DISJUNC 

.............. 

8325.8325,832U 

........................*....****»•** 
THE LIST TO REMOVE ANY GAPS. 

....»•......»...........*..*»*»******»**************• 

1, MAXK 
8327, 8330, 8327 

ST(I) 

h . . . . . . . . . ............ ....................... »......« 
WIND UP WITH AN EMPTY LIST (SC THAT ALL THE LITERALS 
IXED) WE GO TC THE BLASTING PROCEDURE. OTHERWISE WE 
TION PROCEDURE. 

0, 160, 1U12 
................. ......*..........«......... 
EPARATORY TO SCANNING EACH DISJUNCTION IN MODEL TO . 
TERALS OCCUR IN THEM WHICH ARE ON LIST, OR WHICH ARE . 
ITERALS WHICH ARE ON LIST. » 
...................................................... 

............... 
IGN BIT IN fC 

............. ......... 

.......... .................................. 

N THE NEXT DISJUNCTION. 
................................................ 
• 1 
ODEND) 1U2, 150, 150 
t 1 
(NEXT) + NEXT 
................................................ 
TION CONTAINS THE NEGATION OF A LITERAL WHICH IS 
HAT NEGATION FROM THE DISJUNCTION. 
.............................................. 
EAST, LAST 
, MAXK 
- LIST(K)) 1U5, 1U7. 1U5 
+ LIST(K)) lUU, 1U6. lUU 

= M00EL(NEXT1 - 1 

................................................. 
TION CONTAINS A LITERAL WHICH IS ON LIST, DELETE 
TION. 

...... 

.̂.... 
CN . 

....... 

..... 
THE . 

0378 
0379 
0380 
0381 
0382 
0383 
038U 
0385 
0386 
0387 
0388 
0389 
0390 
0391 
0392 
0373 
039U 
0395 
0396 
0397 
0398 
0399 

ouoo 
0U01 
CU02 
0U03 
ouou 
0U05 
0U06 
0U07 
0UC8 
0U09 
OUIO 
OUll 
0U12 
GUI 3 
CU1U 
0U15 
0U16 
0U17 
CU18 
0U19 
0U20 
0U21 
0U22 
0U23 
0U2U 
0U25 
CU26 
0U27 
0U28 
0U29 
0U30 
0U31 
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C*..... 0U32 
1U7 DO lUR M = NEXT, LAST 0U33 
lUS "ODEL(M) = 0 0'*3'l 

CO TC lUl1 0U35 
lUU CONTINUE 0U36 
1U3 CONTINUE 0U37 

GO TO 1U11 0U38 
C....................................................................... 0U39 
C. THE DELETION PROCESS BEING OVER, PACK DOWN MODEL SO AS TO CLOSE UP • OUUO 
C. ANY GAPS. . OUUl 
C....................................................................... 0UU2 

150 J = 0 0UU3 
DO 15U I = I, MCDFND CUUU 
IF (MOOELID) 153, 15U. 153 0UU5 

153 J = J • 1 0UU6 
MODEL(J) = MODEL(I) 0UU7 

151* CONTINUE 0UU8 
MCDFND = J 0UU9 

C»...........».*..........................»............................. 0U50 
C* IF THE ENTIRE MODEL HAS VANISHED, TERMINATE CONSISTENT, OTHERWISE . 0U51 
C. RETURN FOR ANOTHER DAVIS-PUTNAM ITERATION. . 0U52 
C...........................................••>.....*............**..*.. 0U53 

IF (MODEND) 260.260.7115 0U5U 
C...................«..................*........... 0U55 
C. IT IS NECESSARY TO APPLY STEP (6) OF THE DAVIS-PUTNAM PROCESS, ANC . 0U56 
C. BLAST CUT A LITERAL FROM MODEL. WE CHOOSE THE FIRST LITERAL IN THE . 0U57 
C. FIRST DISJUNCTION AS THE PIVOTAL LITERAL TO BE BLASTED CUT. « 0U58 
C...................................................******* ************* 0U59 

160 LPIVOT = M0CEL(2) OkbO 
K = MODEND Oiib\ 
LAST = 0 0U62 

C........................•......***•*****•*****••*******•*•*******•***•* 0'*<̂ 3 
C* SEARCH FC^ THE NEXT DISJUNCTION WHICH CONTAINS AN UNNEGATED » 0U6U 
C. OCCURRENCE OF THE PIVOTAL LITERAL. » 01*65 
C................................*•*•*********************************** 0U66 

200 NEXT = LAST *• 1 0'*'̂'̂  
IF (NEXT - MCDEND) 208, 210, 210 0U68 

208 LEAST = NEXT + 1 O***' 
LAST = MODEL (NEXT) + NEXT 01*70 
DO 201 M = LEAST. LAST 0U71 
IF (MOOEL(M) - LPIVOT) 201, 202, 201 0072 

0U73 
0U7U 
0U75 

201 CONTINUE 
GO TO 200 

C. HAVING FOUND SUCH A DISJUNCTION (CALL IT A ) , PREPARE TC FIND . CU76 
C. EACH DISJUNCTION IN MODEL WHICH CONTAINS AN OCCURRENCE OF THE . 0U77 
C NEGATION OF THE PIVOTAL LITERAL. * 0U78 
c . . . . . . . . . . . . . . . . . . . . . * * * * * * * * * * • * * * * * * * * * * * * * * * * * * * * • * * * * * * * * * * * * * * * * * " 

202 LOST = 0 . . , . , . . . , . . . . . . 

c ' * * S E A R C H * F O R * T H E * N E X T DISJUNCTION WHICH CONTAINS AN OCCURRENCE CF . 01*82 

C* THE PIVOTAL L I T E R A L . ^ . . . . . . . . " 
c . . . . . . . . . . . . . . . » . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

203 NAXT = LOST <• 1 

0U79 
0U80 
0U81 

CU83 
0U8U 
OURS 
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IF (NAXT - MODEND) 207, 200, 200 0Ua6 
207 LUST = NAXT + 1 0U87 

LOST = "ODELINAXT) + NAXT 0U88 
DO ?0U N = LUST, LOST 0U89 
IF (MODEL(N) *• LPIVOT) 2CU, 205, 20U 0U90 

20U CONTINUE 0U91 
GO TC 203 0U92 

C............ CU93 
C. HAVING FOUND THE NEXT SUCH DISJUNCTION, (CALL IT B) WE NOW MERGE . 0U9U 
C. A WITH B, DELETING ANY DUPLICATIONS OF LITERALS IN THE RESULT, . 0U95 
C. AND DELETING THE WHOLE DISJUNCTION IF TWO CCNTRADICTORY LITERALS . 0U96 
C SHOW UP, ONE FROM A AND THE OTHER FROM B. IF THE LENGTH CF MODEL » 0U97 
C EXCEEDS CAPACITY DURING THIS PROCESS, TERMINATE BY FLEEING TO . 0U98 
C. STATEMENT NL"EER 1900. STATEMENTS 17U THRU 231 INVOLVE INTRICATE » 0U99 
C HCUSEKEEPINC CHORES CONNECTED WITH THIS MERGING OPERATION. . 0500 
C..........».***.*»...............»........*•»....»».................».. 0501 

205 NOXT = K + 1 0502 
K = NOXT 0503 
I = LEAST 050U 
J = LUST 0505 
LITS = 0 0505 

191 IF (I - LAST) 190, 190, 193 0507 
190 IF (J - LOST) 169, 169, 195 0508 
169 IF (XABSF(MOCEL(I)) - XABSF(MODEL(J))) 1692, 170, 171 0509 
170 IF (MCDEL(I) + MODEL(J)) 172, 173, 172 0510 
173 IF (MODEL(I) - LPIVOT) 175, I7U, 175 0511 
175 K = NOXT - I 05,2 

GO TO 203 0513 
17U I = I *• 1 051U 

J = J + 1 0515 
GO TO 191 0516 

172 J = J *• 1 
1692 K = K + 1 

0517 
0519 

IF (K - 18000) 1691, 1691, 1900 0519 
1691 LITS = LITS *• 1 0520 

MCDFLIK) = MODEL(I) 0521 
I = I t 1 2522 
GO TO 191 C523 

171 K = K + 1 £j52̂  
IF (K - leoOOl 1711, 1711, 1900 0525 

1711 LITS = LITS + 1 0526 
MODEL(K) = M0DEL(J1 0527 
J = J + 1 
GO TO 191 

193 IF (J - LOST) 1933, 1933, 197 
1933 DO 19U N = J, LOST 

K = K • 1 
IF (K - laOOO) 1931. 1931. 1900 

1931 LITS = LITS + 1 
19U MODEL(K) = MODEL(N) 

GO TO 197 
195 IF (I - LAST) 1953. 1953, 197 
1953 DO 196 " = I. LAST 

K = K t 1 

0528 
0529 
0530 
0531 
0532 
0533 
053U 
0535 
0536 
0537 
0538 
0539 
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IF (K - 1B0C0) 196. 196. 1900 05U0 
196 MODEL{K) = MCDEL(M) 05U1 
197 MOCCL(NOXT) = LITS 05U2 

M = 0 05U3 
198 N = M t 1 C5UU 

IF (N - MCDFND) 199. 203. 203 05U5 
199 L = N + 1 05U6 

" = MCDEL(N) + N 05U7 
IF (MCDEL(N) - McnEL(NOXT)) 230. 198. 230 05UR 

230 J = NOXT + 1 C5U9 
CO 231 I = L." 0550 
IF (MCDEL(I) - "ODELIJ)) 198. 232. 198 C551 

232 J = J + 1 0552 
231 CONTINUE C553 

GO TC 175 055U 
C....................................................................... 055 5 
C. SET UP THE NEW DIS JUNC TI Or: S SC THAT ONE PASS THROUGH THE DELETION . 0556 
C' PROCESS WILL ELIMINATE EACH DISJUNCTION WHICH. IN THE OLD MODEL. . C55'' 
C. CONTAINED EITHER! THE PIVOTAL LITERAL OR ITS NEGATION. THEN » 0553 
C. PROCEED TO THE CELETICN PRCCESS. » 0559 
C....................................................................... C5 6C 

210 "CDEND = K C561 
DC 2UC 1 = 1 . MCCENC C562 
IF (MCDEL(I) + LPIVCT) 7U0. 7U1. 2UC 0563 

2U1 "CDEL(I) = LPIVOT C56U 
2U0 CONTINUE 0565 

LISTI 1 ) = LPIVOT 0566 
MAXK = 1 0567 
GO TO 1U12 0568 

C....................................................................... 056 9 
C. WE HAVE COME HERE BECAUSE THE INSTANTIATION PROCEDURE HAS REACHED . 0570 
C. A DAVIS-PUTNAM -rgsiNG POINT. IF WE ARE IN MANUAL "ODE. WITH NC « C571 
C REQUEST FOR A TEST. WE RETURN TO THE INSTANTIATION PROCESS. • 0572 
C» OTHERWISE WE FIRST DETERMINE WHETHER THE UPCOMING TEST WILL RE » 0573 
C. THE LAST. SAVE MCDEL AND MATRIX. AND SEND CONTRCL TO THE DAVIS- . 057U 
C* PUTNA" TESTING "ROCESS. * C575 
C.«.».....».«......»...«.....*........***.•......*******•*»•»•********•* 0576 
8000 IF (SENSE SWITCH h) 800U.8003 0577 
eoOU IF (SENSE S!-,ITCH 5)8003,8 0578 
8003 WRITETAPE3,( MODEND, ( "ODEL ( I ) , I = 1 . MODEND) . ( MATR I X ( I ) . I = 1. MATENC ) ) 0579 

IF (INS - LPHI) 80.80.8001 0580 
8001 SENSE LIGHT U 0581 

GO TO 80 OS''^ 
C...........................*•****•**** 0583 
C. THE PROBLEM IS CONSISTENT. OUTPUT TO ON-LINE PRINTER AND TAPE 2. • 058U 
C. AND RETURN FCR THE NEXT PRCRLEM. * 0585 

260 BACKSPACE 3 
R 
IF (SENSE LIGHT U) 8002.8 

8002 LATER 

0586 
0587 

EADTAPE3.(MCDEND.(MODEL(I),I=1.MODEND).1MATRI X(I).1=1,MATENC)) 0588 
0589 

MINUTE(X,Y,Z) ?5?9 
0591 LAPSED = LATER - NOW 

PRINT 12C2,(LEAD(I1,1=1.LEADMX) 0592 
PRINT 121C °̂ '-̂  
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PRINT 120U,LAPSED 059U 
WRITE OUTPUT TAPE 2,120?,(LEAD(I),I=1,LEADMX) 0595 
WRITE OUTPUT TAPE 2,1210 C596 
WRITE OUTPUT TAPE 2, 120U,LAPSED,ITERAT,LTEST 0597 
WRITE OUTPUT TAPE ?,1000,(MODEL(I),I=1,MCDEND) 0598 
GO TO 1 0599 

C....................................................................... 0600 
C. THE PROBLEM IS INCONSISTENT. OUTPUT TC THE ON-LINE PRINTER AND . 0601 
C. TAPE 2, ANC RETURN FCR NEXT PROBLEM. . 0602 
C........«...............«..........................«..........«..*..... 060 3 

750 LATER = MINUTE(X,Y,Z) 060U 
LAPSED = LATER - NOW 0605 
PRINT 1202, (LEADd ) .1 = 1.LEADMX) 0606 
PRINT 1203 0607 
PRINT 120U, LAPSED 0608 
WRITE OUTPUT TAPE 2.1207.(LEAD(I).I=1.LEADMX) 0609 
WRITE OUTPUT TAPE 2.1203 0610 

291 WRITE OUTPUT TAPE 2.120U.LAPSED,ITERAT,LTEST 0611 
BACKSPACE 3 0612 
READ TAPE 3. (MODEND,(MODEL(I).I=1.MODEND)) 0613 
WRITE OUTPUT TAPE 2,1OOC.(MODEL(I).I=1."ODEND) 061U 
GO TO 1 0615 

0 0616 
C. CAPACITY HAS BEEN EXCEEDED. OUTPUT RE"ARK TO ON-LINE PRINTER, AND . 0617 
C RETURN FOR NEXT PROBLEM. . 0618 
C............... 0619 
1900 LATER = MINUTE(X,Y,Z) 0620 

LAPSED = LATER - NOW 0621 
PRINT 1202.(LEAD(I),1=1.LEADMX) 0622 
PRINT 1205,LAPSED 0623 
GO TO 1 062U 

1000 FORMAT (701U) 0625 
1001 FORMAT (5C1U) 0626 
1002 FORMAT (7CIU) 0627 
1003 FORMAT (701U) 0628 
lODU FORMAT (6H025, , 8C1U) 0629 
1005 FORMAT (6H0U6, , UI6) 0630 
1006 FOR"AT (6H037, , It) 0631 
1200 FOR"AT (1216) 0632 
1201 FORMAT (12A6) 0633 
1202 FORMAT (1H0, 19A6) 063U 
1203 FORMAT (lUHOINCONSISTENT.) 0635 
120U FORMAT (28H0TIME ELAPSED, IN MINUTES = , 3IU) 0636 
1205 FORMAT (20H0FCRCED STOP AFTER , IU,31H MINUTES, WITH NO PRCCF FO 0637 

0638 
0639 

1UND. ) 
1210 FORMAT (12H0C0NSISTENT.) 
3001 FORMAT (iH0,i5) Xr^n 
3997 FORMAT (8H0TF TEST) 0?r, 

END (0,1,0,0,1) (,̂ 2̂ 
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